
Geometry and Planetary Motion

Introduction

This short article provides a geometrical  description of the mechanics of planetary
motion.  Geometry  is  the  tool  Newton  employed  in  his  Principia  Mathematica  and
though his methods are now outdated there is an elegance and directness to them
that some readers may find more satisfying than high flying mathematics. The article
is based on a presentation given by James Clerk Maxwell  in his book 'Matter and
Motion', published in 1877 and also on a lecture given by Richard Feynman in 1964
that appeared in the book 'Feynman's Lost Lecture' by D.L. Goodstein. The approach
is more accessible than Newton's original, which requires a familiarity with the arcane
geometry of conic sections as described by Apollonius of Perga. All that this article
requires is a basic knowledge of  Euclidian geometry, at least to high school level.
Hopefully everyone reading this will have enough in their background to follow and
some of the more obscure points will be explained.

Part 1: The sum of two vectors.

Figure 1.

In Figure 1 A⃗ and B⃗ are two vectors. In our case these are velocity vectors, which
have both a speed and direction. They are drawn as arrows in the figure. The speed is
indicated by the length of the arrow and the direction is indicated by the orientation of
the arrow on the page. Normally an object is expected to have just one velocity, which
shows its direction and speed with respect to (say) the Earth. However, sometimes a
second velocity comes into play. For example an aeroplane flies at a certain speed and
direction with respect to the body of air  that holds it,  while the air itself  may be
moving in a different direction with respect to the ground (due to wind). The question
then is what would be the velocity of the aeroplane as measured from the ground? 

Suppose A⃗ is the velocity of the plane in the air and B⃗ is the velocity of the wind
across the ground. Each of these velocities is physically independent of the other, so
they  can  be  considered  independently.  Let  us  first  look  at  vector A⃗ . Taking  the
velocity A⃗ in isolation in Figure 1, it would carry the plane from point O a distance

A in  one unit  of  time to  arrive at  the  location P. Then the  wind velocity B⃗ ,
applied at the point P , would after one unit of time carry the plane a distance B to
point Q. Alternatively, consider the alternative route, which allows the wind first to
carry the plane from point O a distance B  to the point R in one unit of time, and
then let the plane's velocity carry it from there a distance A in one unit of time to
arrive again at Q. These two paths must give the same result since the two vectors



are supposed to be independent of each other. The effect overall is that after one unit
of time vector A⃗ produces a shift of the plane through a distance A and vector B⃗
a shift of the distance B. The different paths inevitably construct the parallelogram
evident in Figure 1. The order of application of each vector is irrelevant, so both can
be applied simultaneously. The result is that the plane will then arrive at Q in  one
unit  of  time,  since  the  movements  are  concurrent.  The  distance  the  plane  has
travelled is given by the diagonal of the parallelogram and it velocity will be the length
of the diagonal divided by one unit of time. The net effect (i.e. the sum) of the two
vectors A⃗ and B⃗ is the diagonal vector indicated.

Part 2: The Areal velocity.

Figure 2.

In  Figure  2  it  is  supposed that  a  particle  is  travelling  with  a  velocity v⃗ along a
straight line A E . After point A , at time intervals of Δ t , the points B ,C , D etc.
are marked out and as a result are separated by equal distances of v Δ t ,  where v
is the scalar speed of v⃗ .

It  is  now supposed that  there is  a point S fixed at  some distance from the line
A E , and  drop  the  perpendicular  from S to  meet  the  extended  line  at O. The

length of this line is the distance L. Next the point S is connected to each of the
points  A , B , C , D , E  as  shown.  It  then  turns  out  that the  areas  of  all  the
triangles ASB , BSC , CSD , DSE are equal.  This  follows  because  the  area  of  any
triangle is given by half the product of its base length and its perpendicular height and
in  the  case  of  all  the  triangles  indicated,  the  base  length  is v Δ t and  the
perpendicular height is the distance L .

It is clear from this that, taken over successive time intervals of Δ t , that a particle
moving with a constant velocity v⃗ , past a point S at a perpendicular distance L ,
has a constant triangular area. Using the symbol AΔ to represent the area of the
triangles, a variable av may be defined as

av=
AΔ

Δ t
=

1
2 ΔT

L v ΔT =
1
2

L v ,  (1)

which is the areal velocity of the particle.



Part 3: Areal velocity of a particle orbiting a fixed point.

Figure 3 presents a similar construction to that shown in Figure 2, except that the
particle is now orbiting around the fixed point S instead of merely travelling past in a
straight  line. S is  therefore  to  be regarded as  the  centre  of  force  deflecting  the
particle from a straight line. 

The deflection of the particle's path into the orbit can be described in the following
manner.

Figure 3.

Between points A and B the particle travels with a velocity v⃗ for a time interval
Δ t . The  areal  velocity  of  the  triangle ASB is  thus  given  by  equation  (1).  On

arriving at point B the particle is subjected to an impulse force, which is a force that
is applied instantaneously, in the direction of the point S and giving it an additional
velocity Δ v⃗ in  that  direction.  Meanwhile,  since  velocities v⃗ and Δ v⃗ are
independent of each other,  the particle retains its original velocity v⃗ in the direction
of  the  extended A B line.  The  velocities v⃗ and Δ v⃗ combine  as  a  vector  sum

v⃗+Δ v⃗ , (see Part 1), which in the time Δ t carries the particle to the point C. It
can now be asked what is the areal velocity of the particle for the triangle  BSC? To
obtain this it is necessary to construct some additional lines:

a) From C construct a line parallel to line S B and Δ v⃗ to meet the extended
line A B at K. As a consequence of Part 1, this line has length Δ t Δ v⃗ .

b) Extend line S B downwards and drop a line perpendicular to this from K to
intercept at J.

c) Draw the line S K.

Now, as a consequence of Part 1, the distance B K equals v Δ t , which is the same
as the distance A B. The triangles ASB and BSK must therefore be equal in area,
because they have the same perpendicular height OS and the same base length.
Also triangles BSK and  BSC have the same area, because they have a common
base B S and  the  same  perpendicular  height,  which  is  the  distance J K. (This
follows  because  lines C K and B J are  parallel  by  construction  and J K is
therefore perpendicular to both lines.) It follows that the areas of triangles ASB and

BSC are equal. Just as they are in Figure 2.



An impulse force could now be applied to the particle at C in the direction of S and
the same argument used to show that, after the interval Δ t , the triangles BSC and

CSD are  also equal  in  area.  So it  goes for  all  subsequent  triangles  obtained in
successive intervals of Δ t. Therefore as the particle orbits the point S in discrete
steps of Δ t , the areas of all the triangles are equal. Furthermore, in consequence
the total area of all the triangles is necessarily proportional to the time summed over
all the discrete steps of size Δ t.  

Newton argued that this result would be true even if Δ t was  vanishingly small and
the  number  of  included  triangles  in  any  given  time  interval  was  proportionally
increased. In such a circumstance the discrete orbit will become close to a continuous
curve  to  any  accuracy  required.  It  follows  that  by  this  approach,  in  the  limit  as
Δ t →0, the true orbit of a particle about a point P can be obtained. It also follows

that  for  any  time  intervals [t 1, t 2] where t 1<t 2, the  area  swept  out  by  a  line
connecting  the  orbiting  particle  to  the  centre  of  force S is  proportional  to  the
duration of the time interval i.e. 

Area1,2=k ( t 2−t 1) ,  (2)

where k is a constant. This is proof of Kepler's second law.

An important consequence of this proof is the following. Draw a tangent to the orbit at
any given point P and drop a perpendicular line from the centre of force S to the
tangent  at Q , then  the  velocity v⃗ of  the  orbiting  particle  at P lies  along  the
tangent and, taking the distance S Q to be the variable d perp , the following quantity
is conserved for any point P: 

av=
1
2

d perp v ,  (3)

where av is the areal velocity defined in equation (1).

The areal  velocity can be calculated at any point  in the orbit,  but it  is easiest  to
calculate when the velocity vector is naturally perpendicular to the position vector of
the planet. This is the case when the planet it at perihelion – the closest point to the
Sun. At this location it can be calculated from 

av=
1
2

r p v p ,  (4)

where r p and v p are  the  distance  and  velocity  respectively  of  the  planet  at
perihelion.

Part 4: The tangent to an ellipse.

The construction of a tangent to an ellipse at a point P is shown in Figure 4, but
firstly some basic properties of an ellipse need to be explained. 

An ellipse has its major axis  aligned along its widest  diameter and its  minor axis
aligned along its narrowest diameter. These are mutually perpendicular and cross at
the centre of the ellipse. The major axis has length 2a and the minor axis has length

2 b. Lengths a and b are  related  to  the  eccentricity e of  the  ellipse  via  the
formula

b2
=a2

(1−e2
) .  (5)



The ellipse has two focii S 1 and S 2 on the major axis, each at a distance a e from
the centre and thus a distance 2 ae apart (see Figure 4). Any point P on the ellipse
is at a distance r 1 from S 1 and a distance r 2 from S 2 and for all points P

r 1+r2=2 a.  (6)

Relation  (6) underpins the common means of constructing an ellipse using a fixed
length of string and two fixed points. Note that when r 1 equals r 2, then from  (6)

r 1=r 2=a , and since P is then on the minor axis it follows that 

a2
=b2

+(a e)2 ,  (7)

which rearranges to give the relation (5).

Figure 4

To construct a tangent at P in Figure 4, first extend the line S 1 P a distance r 2  to
the point D. Now draw a line from S 2 to D. Drop a perpendicular line from P to
the line S 2 D and extend in both directions to make the line U V in the figure. This
line is the tangent at P. That this is the case is easily shown: 

Line S 1 D is of length r 1+r2 by construction, and therefore by  (6) equals 2 a. For
any  point P ' along  the  line U V , except  point P , the  sum  of  the  distances

r 1 '≡S1 P ' and r 2 ' ≡P ' D must be greater than 2a , since these two distances are
not co-linear with  S 1 D. Since the sum of the distances r 1 ' and r 2 ' violates the
ellipse property (6), the point P ' ≠P cannot lie on the ellipse. Point P is therefore
the only point on both the line U V and the ellipse and thus U V is the tangent.

Note that alternatively the tangent could have been constructed by extending the line
S 2 P a distance r 1 to point E and then dropping a perpendicular line from P to

the  line S 1 E. This  allows  us  to  prove  a  useful  property  of  the  tangent,  which
concerns the perpendicular distances to the tangent from the focii S 1 and S 2 . In
Figure 4 the perpendiculars lie along the lines S 1 E and S 2 D respectively. Labelling
the distance from S 1 to the tangent as p1 and from S 2 to the tangent as p2, it
can be shown that 



b2
= p1 p2.  (8)

Proof of relation (8) requires us first to recognise that triangles S 1 P E and S 2 P D
are equivalent isosceles triangles. The equal angles are labelled ϕ in Figure 4. The
equivalence of the triangles allows us to write 

cosϕ=
p1

r 1

=
p2

r2

=
p2

(2 a−r1)
,  (9)

where, in the final ratio, relation (6) has been used to replace r 2.

Now consider the triangle S 1 E S2 . The cosine rule gives 

(S1 S 2)
2
=(S 1 E )

2
+(S 2 E )

2
−2(S1 E)(S 2 E )cosϕ ,  (10)

which in terms of variables defined above can be written as 

(2 a e)2
=(2 p1)

2
+(2 a)

2
−2(2 p1)(2 a)cosϕ .  (11)

Equation (11) reduces to 

p1
2
−2 a p1cos ϕ+a2

(1−e2
)=0  (12)

From (5) the last term on the left of (12) must be b2 , and from (9) replacing cosϕ
by the ratio p1/r1 means (12) can be rearranged to 

b2
=

p1
2

r1

(2a−r1) .  (13)

Finally, according to (9), p1 /r1 can be replaced by p2/(2 a−r1) and so (13) reduces
to (8).

Part 5: Proving the inverse square law

Kepler's first law is that a planet orbits the Sun in an ellipse, with the Sun at one focus
of the ellipse. There follows Maxwell's proof that this is consistent with the inverse
square law of gravity.

Figure 5 shows an elliptical orbit, where S 1, S 2 are the ellipse focii, with the Sun at
S 1 . P is the current position of the planet. Line U V is the tangent at P , r 1

and r 2 are  the  distances  from  the  focii  to  the  position P and p1, p2 are  the
perpendiculars dropped from the focii to the tangent. The line S 1 P is extended by
the distance r 2 to the point D , making the distance S 1 D equal to 2a , which is
the length of the major axis of the ellipse. Finally a line is drawn from S 2 to D ,

and it is known from Part 4, that this line is bisected at 90o by the tangent U V.

Now,  the velocity of  the planet at P is v⃗ and its  areal  velocity av according to
equation  (1) is 

av=
1
2

p1 v ,  (14)

and av is a constant for the orbit. Replacing p1 using equation (8) allows (14) to be
written as 



v=
2av

b2 p2 .  (15)

Since av and b are constants, it  follows that the distance p2 , (which is half  the

line S2 D or the length S2 U), is directly proportional to the velocity of the planet at P.

Figure 5.

This  relationship  means  that  for  any  point P on  the  ellipse,  the  geometric
construction of the tangent also reveals the velocity. For any point P on the ellipse a
circle of radius 2 a centred on S 1 is drawn and the line S 1 P extended to meet the
circle  at D. The  line S 2 D has  length 2 p2 which  according  to  (15) gives  the
velocity.  The direction of  the velocity at P is  given by the tangent,  which is  the
perpendicular bisector of line S 2 D.  

The circle drawn around S 1 serves for all points on the ellipse. Once it is drawn, any
line drawn from S 2 to the circle is a measure of the velocity at some point P on the
ellipse. The precise point concerned is where the perpendicular bisector of the line

S 2 P (i.e. the tangent) touches the ellipse. This geometric description of the velocity
is called a hodograph. Note that while the planet's position vector revolves around the
focus S 1 , the velocity vector (represented by the line S 2 D )  revolves around the focus
S 2 , which shows that the physically empty focus of the ellipse nevertheless has a role
to play in the dynamics of the system. Note however, that the direction of line S 2 D  is

90o behind the  true  velocity  vector,  since  it  is  perpendicular  to  the  tangent  by
construction. 

Consider  now  another  position Q on  the  orbit  (see  Figure  5)  close  to P . (The
distance P Q represents  a  change  in  position  over  a  very  small  time  interval.)
Extension of the line S 1 Q meets the outer circle at G. While the distance P Q thus
represents  the  change  in  the  planet's  position, the  distance D G represents  the



change in the planet's  velocity (i.e.  the acceleration) in the same interval of time.
Being  on  the  circumference  of  the  outer  circle,  the  line D G (and  therefore  the
acceleration) is perpendicular to the circle's radius, but the hodograph is 90o behind
the true direction of the velocity, so the acceleration is actually in the direction of the
Sun, as expected. 

Furthermore, as the planet  moves from P to Q , the change in the angle of the
Sun-planet vector is the same as the change in the angle between lines  S 1 D and
S 1 G ,  and  occurs  in  the  same  time  interval.  The  angular  change  is  therefore
proportional to both the angular velocity of the planet and its acceleration, so the
acceleration and angular velocities are proportional to each other. 

Now, when the interval  of time between positions P and Q becomes vanishingly
small, the two points approach merger. In this limiting condition the areal velocity (1)
can be written as 

av=
1
2

r1(ω r 1) i.e. av=
1
2
ω r1

2 ,  (16)

where r 1  is  the  Sun-planet  distance, ω is  the  angular  velocity  and ω r 1 is  the
velocity perpendicular to r 1 .  Rearranging (16) gives 

ω=
2av

r1
2 ,  (17)

which shows that angular velocity is inversely proportional to r 1
2 . It has already been

established that angular velocity and acceleration are proportional, so it is evident that
the acceleration of  the planet,  and therefore the force acting upon it,  is inversely
proportional to the square of the Sun-planet distance. This proof of the inverse square
law is surprising in that it merely requires that the orbit be an ellipse with the Sun at
one focus and that the gravitational force to originate from the Sun for everything to
fall into place. 

Note  however  that  this  does not  prove the  converse: that  an  inverse  square law
implies an ellipse. Presumably Newton was concerned to establish the inverse square
law of gravity as a consequence of observed facts rather than speculation, otherwise
the law would appear to be a fortunate guess and perhaps not unique. Newton went
on to establish that parabolic and hyperbolic orbits  were also compatible with the
inverse square law, which offered a means to explain the orbits of comets. Being
Newton,  and  therefore  thorough,  he  also  proved  that  these  were  the  only  orbits
compatible with the inverse square law.
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