
A Note on the Motion of Star Images across a Camera Sensor

In order to describe a star’s motion across the sensor of a camera we need to
know a few things:

1. The rate at which stars move along the celestial equator.
2. The effect a star’s declination has on its rate of movement.
3. The focal length of the telescope or camera lens.
4. The dimensions of the camera’s sensor.

These will be discussed in turn below.

1/. Star motion along the celestial equator

The rate at which the stars move across the sky is determined by the rate of
rotation  of  the  Earth (ω0) and  the  declination  of  the  star (δ) . The  rate  of
rotation is set by the sidereal day, which is 23h 56 m or 86160 s. This means
that 

ω0=
2π

86160
=7.292462055×10−5 radians/sec. (1)

We can also obtain the equivalent value in seconds of arc per second of time (a
common requirement) using the formula

~ω0=
360×3600

86160
=15.04178273 arc-sec / sec, (2)

where  the  term 360×3600 converts 360 degrees  into  the  corresponding
number of arc seconds. The constant ~ω0 is the number of arc seconds through
which a  star  on the celestial  equator  moves in  one second of  time. ~ω0 in
equation (2) is a more memorable number than ω0 in equation (1), since it is
almost 15 arc-sec / sec.

2/. The effect of declination on the motion of stars

Stars on the celestial equator have zero declination i.e. (δ=0). Stars not on
the  celestial  equator,  i.e.  with (δ≠0), must  move  at  a  slower  rate,  as
indicated in Figure 1. Stars at declinations with δ≠0 move through the same
Right Ascension angle θ , as at the celestial equator, but the distance moved in
the sky differs by the factor of cos (δ). This is because stars on the celestial
equator have a radius of turn equal to the radius R of the celestial sphere
(whatever  magnitude  is  assigned  to  this),  while  the  radius  of  turn  at  a
declination δ≠0, is given as R cos(δ) . Because of this difference, the angular
rate of motion ωδ at δ≠0 is given by

ωδ=ω0×cos(δ) in radians / sec, (3)



or 

~ωδ=
~ω0×cos (δ) in arc-sec / sec (4)

It follows from (3) that ωδ is largest when δ=0 , in which case ωδ=ω0 , and it
is zero when δ=90o and cos (δ)=0.

Figure 1 

3/. The Effect of the focal length

Figure 2 

The effect of the telescope or camera lens of focal length f  on the motion of
a star’s image across the sensor is shown in Figure 2. The lens inverts the
direction of motion the star’s image with respect to the sky, though the angular
rate of turn θ̇ (pronounced theta-dot) is the same for the camera as in the
sky  (albeit  in  the  opposite  sense  directionally)  and  so  θ̇=ωδ . The  rate  of
movement v of the star’s image across the camera’s sensor is therefore given
by

v=ωδ×f . (5)

If the focal length is specified in millimetres (as it usually is), the formula (5)
returns v in units of millimetres / second. Note that it is not correct to use the
constant ~ωδ from equation (4) for this calculation, the units of angle must be
radians for equation (5) to hold true. 

We may of course write (5) in the equivalent form



v=ω0×cosδ×f , (6)

which fully specifies all the required quantities on the right hand side.

4/. The dimensions of the camera sensor.

Cameras come in all shapes and sizes and so we will focus on DSLR (or  Digital
Single Lens Reflex) cameras, which are by far the most common cameras used
in astrophotography. However, we note that the adaptation of what is written
here to other types of camera is not difficult.

The sensor in a DSLR camera is descended from the original photographic film,
which was most often 35 mm film with a ~3/2 aspect ratio (i.e. film width /
film height = 1.5). From these specifications it follows that the active surface
of the film was 29.1 mm by 19.4 mm. However, most DSLRs produced to date
are somewhat smaller than this, by a factor of 0.8 or so. This means a typical
DSLR sensor has the dimensions of 23.3 mm by 15.5 mm, which is equivalent
to a 28 mm film. (We note here the use of millimetres to specify sizes, which
corresponds with these units also specifying lens diameters and focal lengths.)
A typical DSLR camera may also have a sensor composed of 6 Megapixels,
which forms a 3000 x 2000 grid of square pixels with an aspect ratio of 1.5.
Another common pixel count is 24 megapixels, which forms a grid of 6000 x
4000 pixels. 

The first issue we tackle is the question of how long it takes for a star image to
move across the camera sensor if the camera is stationary. This question is
relevant to the issue of ‘star trailing’ which occurs when a fixed camera is used
to take wide field shots. If we denote the sensor width as w , from (6) we can
write the time for a star to traverse this width as

t=
w
v
=

w
ω×cos(δ)×f

. (7)

We note immediately that the only variable the astronomer has any control
over is the focal length f , all other variables are defined either by nature or
the camera. Setting w=23.3 mm (for our typical camera), f =500 mm (for a
typical small telescope) and δ=0 for fastest movement of stars, we find from
(7) that t=639 s, which is close to 11 minutes. How long does it take to move
across 1 pixel? A pixel width is 7.77×10−3 mm for a 6 megapixel sensor and
half  that for 24  megapixels.  Putting these widths into  (7) gives 0.2 s and
0.1 s respectively. A typical star image is of order 0.16 mm in diameter, two

stars in contact on the image are therefore 0.16 mm apart, which can be taken
as the minimum separation at which separate stars can be observed. Putting
this width into (7) reveals that after 4.4 s, it would be possible to tell that a
star image is no longer a circle. This is the order of magnitude of time for
which a camera can be held fixed without star trailing becoming apparent.
However, much depends on the quality of the eyesight of the viewer, and it is
often quoted that something more like 8 seconds is acceptable in practice.


