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These notes are concerned with the motion of a rocket, which is propelled 
forwards by the expulsion of mass at the rear with a fixed velocity relative to 
the rocket body. Here we attempt to explain the dynamics of the rocket.

Consider  a  mass m travelling  in  a  straight  line  with  a  velocity v0 .  Its
momentum is therefore

ptot=mv0. (1)

Figure 1

After a time interval of δ t , the mass splits into a mass m−δm and a small
mass δm , (Figure  1)  and  the  mass δm is  instantaneously  projected
backwards with a velocity u with respect to the mass m−δm . As a result, the
momentum of the mass δm will now be

pδm=δm(v0−u) (2)

and the momentum of the mass m−δm will be

pm−δm=(m−δm)v0+δmu, (3)

which we can write as

pm−δm=(m−δm)(v0+δmu/(m−δm)) , (4)
 
where the expression (v0+δmu/(m−δm)) is evidently the velocity of the mass
m−δm .  This  result  follows  from  the  conservation  of  the  total  system

momentum, which remains constant at ptot .

We now discard mass δm as ‘lost’  to consider the mass m−δm in isolation
and imagine, after another interval δ t , another backward projection of a small
mass δm, at  a  velocity  of u relative  to  the  remaining  mass m−2δm , and
again calculate the momentum changes. The momentum of mass δm is

pδm=δm(v0+δmu /(m−δm)−u) , (5)

and the momentum of the mass m−2δm turns out to be



pm−2δm=(m−2δm)(v0+δmu /(m−δm))+δmu, (6)
 
or

pm−2δm=(m−2δm)(v0+δmu /(m−δm)+δmu /(m−2δm)) . (7)

If we continue with this procedure of ejecting a small mass δm in a sequence
of time steps δ t , while concentrating on the remaining mass rather than the
mass ejected we can build up the following table to a limit of n steps.

Table 1

Time Momentum of remaining mass

0 mv0

δ t (m−δm)(v0+δmu/(m−δm))

2δt (m−2δm)(v0+δmu /(m−δm)+δmu /(m−2δm))

3δ t (m−3δm)(v0+δmu/(m−δm)+δmu/(m−2δm)+δmu /(m−3δm))

etc . etc .

nδ t (m−nδm)(v0+δmu∑
i=1

n

1/(m−iδm))

The  final  entry  in  this  table  summarises  the  ‘rocket’  action  we have  been
investigating.  We can readily  identify  a mass  term (m−i δm) and a velocity

term (v0+δmu∑i=1

n
1/(m−iδm)) . We shall discuss each in turn.

We may introduce the time step δ t into the mass term as follows

m(iδ t )=m−i δ t( δmδ t ) . (8)

Clearly we can write t=iδ t as the elapsed time after i steps and δm /δ t as 
the rate of fuel consumption, which is a constant we designate as k . We can 
therefore write equation (8) as

m(t)=(m0−k t ), (9)

where we have defined the time dependent mass as m(t) , and the initial mass
as m0 , which was formerly written as m.

We can now write the velocity term as 

v ( t)=v0+δ t k u∑i=1

n
1 /m( ti), (10)



where ti is  the  discrete  time  sampled  at  intervals  of δ t , and v0 is  the
original velocity. In the limit of δ t→0,  we may express (10) using an integral:

v ( t)=v0+k u∫
τ=0

t

(mo−k τ)
−1d τ , (11)

where τ is a time variable. Hence on integrating we obtain

v ( t)=v0−u[ log(mo−k τ)]0
t , (12)

from which we find

v ( t)=v0+u log (
m0

mo−k t ) . (13)

This is the rocket equation, which describes how a rocket’s velocity changes
with time. Clearly the condition m0>kt must hold at all times.

From equations  (9) and (12) it is apparent that at time t the momentum of
the rocket (plus remaining fuel) is 

p=(m0−k t) v (t)=(m0−k t)(v0+u log(
m0

mo−k t )) . (14)

The corresponding change in momentum, Δ p , (of the mass (m0−kt) , ) during
the time t is

Δ p=(m0−k t)(v ( t)−v0)=(m0−k t)u log(
m0

mo−k t ) . (15)

This is the increase in the momentum of the residual rocket mass (including
fuel load at the time). The change in momentum of the exhaust gasses during
powered flight, according to the principle of momentum conservation, is the
negative of this.

 The kinetic energy the rocket acquires in time t is

K r=
1
2
(m0−k t )(v (t )−v0)

2
=
1
2
(m0−k t)u

2( log(
m0

mo−k t ))
2

. (16)

The kinetic energy the exhaust gas acquires in the same time is



K e=
1
2k t

(Δ p)
2
=

(m0−k t )
2

2k t
u
2(log(

m0
mo−k t ))

2

, (17)

where k t is the mass of the fuel used in the time t . This is the kinetic energy
of the bulk of the gas and does not account for the internal motion (i.e. the
thermal energy) of the body of the gas. This can be obtained from the mean
temperature of  the exhaust  gas,  its  bulk  mass  and composition,  as  in  the
following order of magnitude estimate:

KT=
3
2
k t (k B(T−T 0)

μ ), (18)

which assumes the final products of the rocket fuel are ideal gases.  The term
μ is  the  average  mass  of  the  atoms  in  the  gas, k t is  the  mass  of  the

expended  fuel, k B is  Boltzmann’s  constant, T  the  average  absolute
temperature of the exhaust gas,  and T 0 is the initial temperature of the fuel.
Note  that  this  does  not  account  for  any  energy  lost  as  electromagnetic
radiation nor does it recognise the molecular nature of the exhaust gas, which
would require us to account for changes in chemical bonding energy.

The total energy expended during the time t is therefore

E=K r+K e+KT=
(m0−k t )
2k t

m0u
2( log(

m0
mo−k t ))

2

+
3
2
k t( k B(T−T o)

μ ). (19)

In thermodynamic terms the quantities K r and K e can be regarded as the
work (W )  done by  the  rocket,  while KT is  the  change in  internal  energy
(ΔU ) of the fuel mass.

An important  factor  in  rocketry  is  the  energy  efficiency  of  the  rocket, ϵ ,
which can be obtained by combining equations (16)  and  (19):

ϵ=100
K r
E tot

%. (20)

This is the percentage of the total energy that is used to propel the rocket. The
efficiency is unlikely to approach 100%.
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