
Notes on Basic Thermodynamics

The First Law
The First Law of Thermodynamics:  Energy cannot be created or lost, it can only be
changed in form.

Energy can take the form of heat (thermal energy), kinetic energy, potential energy,
electrical energy, magnetic energy and electromagnetic energy (radiation).

Heat and the Thermodynamic System

In thermodynamics we are normally concerned with the energy balance of a system of
some kind. The basic model system (Figure 1) is a container which has some matter
(gas, liquid or solid) inside and have an internal energy U . It  also has a specified
volume V , temperature T and pressure P . The walls  of  the  system may or  may not
(according to design) permit the transfer of heat energy q into or out of the system.
As  a  result,  the  system  internal  energy  may  change  by  an  amount ΔU , and  its
volume, temperature and pressure may also change as a result. The system may also
do some work w on the external environment or have work done on it.

Figure 1. The basic system

The  quantities  may  have  positive  or  negative  values  according  to  the  following
conventions.

Heat: 

q is +ve if endothermic system (heat in)

q is −ve if exothermic system (heat out)
(1)

Internal energy: 

ΔU =change in internal energy:
+ve if energy increases
−ve if energy decreases

(2)

Work: 

w = work done by the system:
+ve if work done by the system
−ve if work done on the system

(3)
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The First Law applied to the basic system establishes the relation:
q=ΔU+w (4)

from which many thermodynamic relations are derived.

The Ideal Gas

An ideal gas is one which obeys the following equation of state.

PV=nRT , (5)

where P is  the  gas  pressure (Pa) , V is  the  system  volume (m3
) , T is  the  system

temperature (K ), n is  the  number  of  moles  of  gas (mol) and R is  the  universal  gas
constant (8.1446 J mol−1 K−1

) .  The internal energy U of an ideal gas is 

U=
3
2
nRT . (6)

Most gases are good approximations to an ideal gas, so it is a good model system to 
study.

Gas Expansion and Work

In many circumstances a system does work when gas expansion takes place. It is
useful to know how much work can be done when this occurs. For this purpose the
system is  viewed  as  a  piston  (Figure  2)  that  moves  in  response  to  the  internal
pressure P or external pressure Pext .

Figure 2. Work done by a volume of gas

The work δw done by the enclosed volume of gas is  
δw=f δ l=Pext Aδ l=Pext δV , (7)

where δ l is the piston displacement ,δ V is the change in volume, A is the area of the
piston  cross  section,  f is  the  force  exerted  on  the  piston  and Pext is  the  pressure
external to the piston. The amount of work done depends on how the expansion is
carried out. Two important examples are: an irreversible expansion against a constant
external pressure (Case 1) and internal and external pressures are out of balance;
and a reversible expansion (Case 2), where internal and external pressures are always
in balance.

Case 1. Constant external pressure.
δ w=Pextδ V . (8)

So 

w=∫
v1

V 2

Pext dV

=Pext (V 2−V 1)

=Pext ΔV .

(9)
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From (9) w is +ve if V 2>V 1 i.e. ΔV +ve ,  and w is −ve if V 2<V 1 i.e. ΔV−ve .

Case 2. Reversible expansion.

A  reversible change  is  one  accomplished  by  infinitesimal  changes,  such  that
throughout all forces are in balance and the system remains in equilibrium with its
surroundings. In this case 

Pext=P . (10)

Where P is the pressure of the gas inside the piston. So 

w=∫
V 1

V 2

PdV

=∫
V 1

V 2

nRT
V

dV

w=nRT log
V 2

V 1

.

(11)

Heat Capacity

Two definitions of heat capacity arise in thermodynamics: one where heat is added to
a system that retains the same volume; and one where heat is added to a system that
retains the same pressure. These are defined as: 

Cv is the heat required to raise the temperature of one mole of a substance by 1 K,

under constant volume conditions.

Cp is the heat required to raise the temperature of one mole of a substance by 1 K,

under constant pressure conditions.

Constant Volume:

At constant volume, no work is  done by the system i.e. w=0 , so for  an ideal gas
equation (4) becomes

q=ΔU+w=ΔU=
3
2
R(T 2−T 1)=

3
2
R ΔT . (12)

Since 
C v=q /ΔT (13)

then 

C v=
3
2
R . (14)

Constant Pressure:

Under a reversible constant external pressure equation (4) becomes

q=ΔU+P ext∫
V 1

V 2

dv . (15)

So 
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q=ΔU+Pext ΔV . (16)

Since ΔV=V 2−V 1 , then by the ideal gas law (5) for one mole of gas

ΔV=
RT 2
Pext

−
RT 1

Pext

=
RΔT
Pext

. (17)

Then 

Cp=
q

ΔT
=

ΔU
ΔT

+R , (18)

and so 
Cp=C v+R . (19)

Other Properties of Gas Expansions

Isothermal Expansion.

In an isothermal expansion ΔT=0 and therefore ΔU=0.  So 

q=w=nRT log
V 2

V 1
(20)

for a reversible expansion. 

Irreversible Adiabatic Expansion

In  an  adiabatic  expansion q=0 and  therefore ΔU=−w .  So  for  an  irreversible
expansion

ΔU=−P ext ΔV . (21)

For an ideal gas 

ΔU=
3
2
nRΔT , (22)

so 
3
2
nRΔT=−Pext ΔV (23)

and 

ΔT=−
2
3

Pext

nR
ΔV . (24)

If ΔV >0 i.e. V 2>V 1 , ΔT is −ve and T1>T 2 . The temperature falls in adiabatic 
expansions.

Reversible Adiabatic Expansion

For a reversible expansion the internal pressure P and external pressure Pext are equal:

P=Pext=
nRT
V

(25)

also 
δU=nC vδ T (26)

and 
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δU=−Pextδ V . (27)

So 

nC vδ T=−
nRT
V

δ V , (28)

which leads to 

C v∫
T1

T2
δ T
T

=−∫
V 1

V 2

R
V

δ V . (29)

Integration gives 

C v log
T2
T1

=−R log
V 2

V 1

. (30)

So 

T 2
T 1

=(
V 2

V 1
)
−R /Cv

(31)

and then 

P2V 2

P1V 1

=(
V 2

V 1
)
−R /Cv

(32)

or 

P2V 2
(1+R /Cv)=P1V 1

(1+R /Cv ). (33)

Let 
γ =1+R/C v=(C v+R)/C v=C p/Cv (34)

so 
P1V 1

γ
=P2V 2

γ , (35)

i.e. 
P1V 1

γ
=Const . (36)

Equation (36) applies to an adiabatic expansions.

The Virial Theorem

The Virial Theorem provides a means to calculate the pressure in a non-ideal gas. For
a gas consisting of n atoms, in a cubic vessel of dimension l×l×l , the virial Φ is defined
as 

Φ=⟨ –∑
i=1

n

∑
α =1

3

xi
α f i

α ⟩ , (37)

where 
f i

α
=f i

α '+ f i
α ' ' (38)

is the α component of the force on atom i and 

f i
α '=w i

α
δ (x i

α
−l) (39)

is the (instantaneous) wall force (with magnitude w i
α and cell width l ) and 

f i
α ' '=∑

j≠i

n

f ij
α (40)

is the force arising from atomic interactions (assumed to be pair interactions).
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Consider the term x i
α ẋ i

α  then 

d
dt

(x i
α ẋ i

α
)= ẋ i

α ẋ i
α
+x i

α ẍ i
α . (41)

Then 

ẍ i
α
=
1
x i

α ( d
dt

(x i
α ẋ i

α
)− ẋ i

α ẋi
α ) , (42)

so from Newton’s law

f i
α ' '=

mi

x i
α

d
dt

( xi
α ẋ i

α
)−

mi

x i
α ẋ i

α ẋ i
α . (43)

From equations (38),(39) and (43) equation (37) becomes 

Φ=⟨−∑
i=1

n

∑
α =1

3

wi
α
δ (x i

α
−l)x i

α ⟩+⟨−∑
i=1

n

∑
α=1

3

mi
d
dt

(xi
α ẋ i

α
)⟩ +⟨∑

i=1

n

∑
α =1

3

mi ẋ i
α ẋ i

α ⟩ . (44)

which becomes 

Φ=−3PAl−∑
i=1

n

∑
α=1

3 mi
τ ∫

0

τ →∞
d
dt

(xi
α ẋ i

α
)dt+2K , (45)

where PA is the area force of the confining vessel (A=l×l) and K is the system kinetic
energy. The middle term right can be integrated to give

−∑
i=1

n

∑
α=1

3 mi
τ ∫

0

τ →∞
d
dt

(x i
α ẋ i

α
)dt=−∑

i=1

n

∑
α=1

3 mi
τ [ xi

α ẋ i
α
]0
τ
=0. (46)

This follows because x i
α and ẋ i

α are not correlated1 and have zero average values.

Finally 
Φ=−3PV +2K , (47)

or on rearrangement
P=(2K−Φ)/3V . (48)

Note that if the virial is zero then

PV=
2
3
K . (49)

This result applies to an ideal gas.

Enthalpy

Enthalpy is a key variable in thermodynamics, taking into account the internal energy 
of a system and the system pressure. It is a state function of the system - under the 
same conditions of temperature and pressure a given quantity of matter will always 
have the same enthalpy.

The enthalpy H of a system is defined by the equation 

H=U+PV (50)
where U is the system internal energy, P is the pressure and V is the system volume.
The differential form is 

1 This is not strictly true. At the walls the velocity is momentarily zero, but being zero 
contributes nothing to the average.
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dH=dU+PdV+VdP. (51)
Under constant pressure conditions dP=0 , so 

dH=dU+PdV , (52)
which means that

∫
a

b

dH=∫
a

b

dU+P∫
a

b

dV , (53)

and therefore 
ΔH=ΔU+PΔV . (54)

Gas Reactions

Consider the reaction 
aA+bB⇔ cC+dD . (55)

Then 
PV (products )=(c+d)RT
PV (reactants)=(a+b)RT

(56)

and so 
Δ(PV )=(c+d−a−b)RT ,   or  Δ(PV )=ΔnRT , (57)

where
Δn=c+d−a−b , (58)

is the change in molarity of the species present.

The change in enthalpy due to a chemical reaction is 
ΔH=ΔU+Δ (PV )  or ΔH=ΔU+Δn RT . (59)

Standard enthalpies for the elements are defined as zero at standard temperature and
pressure (STP)2.

Enthalpy of Formation and Hess’s Law

The Enthalpy of Formation of a compound is the change in enthalpy when one mole of
a compound is formed from reactants.

Hess’ Law states that the enthalpy of formation is independent of the reaction path-
way and is the sum of enthalpy changes of all intermediate steps. For example the
reaction 

C(s)+O2→CO2 (60)

can be represented by a series of intermediate reactions:
C(s)→C(g) ΔH1 (+ve)
1
2
O2→O ΔH 2 (+ve)

C (g)+O→CO ΔH 3 (−ve)
CO+O→CO2 ΔH 4 (−ve )

(61)

The reaction can therefore be written as the sum of all the reactions
C(s)+O2+C (g)+O+CO+O→C (g)+2O+CO+CO2 (62)

2 Standard temperature and pressure (STP) is 25 Celsius and 1 atmosphere.
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Cancelling the components that appear on both sides of (62) gives equation (60) as 
expected. The enthalpy change for the reaction (61) is 

ΔH=ΔH1+2ΔH 2+ΔH 3+ΔH 4=ΔH f (CO2) , (63)

Which is the enthalpy of formation of CO2 . These results may be represented by the 
following figure (Figure 3).

Figure 3. Hess’s law and the Formation of CO2

Entropy and the Second Law
Entropy is defined by the integral 

Δ S=∫
1

2 dqrev

T
. (64)

Which gives the change in entropy on changing from state 1 to state 2 by a reversible
process.  In  molecular  terms  (i.e.  in  the  language  of  statistical  thermodynamics)
entropy  is  a  measure  of  the  degree  of  disorder  in  system.  However,  classical
thermodynamics pays no heed to this. Like enthalpy, entropy is a state function of the
system.

The Second Law of Thermodynamics states: In a spontaneous process, the entropy of
a system plus its surroundings always increases. 

Entropy and Reversible Isothermal Expansion

Since ΔU=0 at fixed T

qrev=w=RT log
V 2

V 1

,      (at fixed T). (65)

For a reversible expansion from V 1 to V 2 . From (64)  it follows that 

Δ Sg=R log
V 2

V 1

,     (at fixed T). (66)

where Δ Sg is the change in entropy of the gas. The corresponding change in entropy
for the surroundings 

Δ Ss=−R log
V 2

V 1
(67)

since the surroundings lost the energy −qrev to the gas under isothermal conditions. It
follows that 

Δ Sg+Δ Ss=0 , (68)
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meaning the overall change in entropy is zero in this case. So in a reversible process, 
the entropy remains constant.

Entropy and Irreversible Isothermal Expansion

The change in entropy for an irreversible expansion is the same as (67), since entropy
is a state function i.e. it is a property of the system under the prescribed thermo-
dynamic conditions, not of the process by which that state is achieved. If the gas
expands from V 1 to V 2 without doing work (e.g. into an evacuated vessel) then 

qrev=0  and Δ Ss=0. (69)

In this case 

Δ Sg+Δ Ss=R log
V 2

V 1
(70)

and the total entropy increases.

The Temperature Dependence of Entropy

A reversible temperature change is one in which the temperature of the system differs
only  infinitesimally  from  the  temperature  of  the  surrounding  heat  bath.  Thus
equilibration is maintained throughout.

So we have 

Δ S=∫
dqrev

T
, (71)

where, under constant pressure conditions for n moles of a substance
dqrev=nC pdT . (72)

so 

Δ S=n∫
T 1

T 2 C p

T
dT=nC p log

T2
T1

, (73)

which is the system entropy change going from temperature T1 to T2 . So we have 

Δ S=nC p log
T 2
T 1

  for constant pressure

and

Δ S=nC v log
T 2
T 1

 for constant volume.

(74)

Thermal Equilibrium

Suppose we have a system 1 at a temperature T1 and a system 2 at a temperature T2
where T2>T 1 .  If the two systems are brought into thermal contact, experience shows
that they will equilibrate to the same temperature T , where  T2>T >T 1. For systems 1
and 2 the entropy changes at constant pressure are 

Δ S1=nC p log
T
T 1

and

Δ S2=nC p log
T
T 2

(75)

The total change in entropy of both systems combined is 
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Δ S=ΔS1+Δ S2=nC p log
T2

T 1T 2
. (76)

Let 
T1=T−ΔT  and T2=T+ΔT . (77)

Then equation (76) becomes 

Δ S=nC p log
T 2

(T2−ΔT 2)
. (78)

From which it is apparent that Δ S>0  i.e. the entropy increases.

Entropy and Changes of State

Take for example melting under constant temperature conditions. The melting temper-
ature is T m and the change in entropy is 

Δ S=∫
1

2 dqrev

T m

=
1
Tm

∫
1

2

dqrev . (79)

At constant pressure 
dqrev=dH , (80)

so 

Δ S=
ΔH
Tm

=
Enthalpy of melting

Temperature of melting
. (81)

The entropy for a change of state can often be estimated using Trouton’s rule which
states that the entropy of vaporization (or boiling) Δ Svap, is approximately the same for
a wide range of liquids and is given approximately by 

Δ Svap=10.5R , (82)

where R is the universal gas constant. From equation (81) this means that 

T b=
ΔH b

10.5 R
, (83)

is the approximate boiling temperature.

Entropy and the Third Law

Figure 4. Calculating Entropy using the Third Law

The Third Law of Thermodynamics states:  The entropy of a perfect crystal at 0K is
zero. 
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This  means  that  entropy  at  a  given  temperature  T  can  be  calculated  from the
dependence of Cp or C v on temperature. For example Figure 4 shows how the entropy

may be calculated from zero Kelvin, the heating of the solid to the melting point T m,

the latent heat of melting ΔHm ,  through heating of the liquid to the boiling point T b

and the latent heat of  boiling ΔH b , and on through the heating of  the gas to the

required temperature at T , as encapsulated by the equation:

S=∫
0

T m Cp
s

T
dT+

ΔH m

T m

+∫
T m

Tb Cp
l

T
dT+

ΔH b

T b

+∫
Tb

T C p
g

T
dT . (84)

For equation  (84) to be practical, the specific heats of the solid, liquid and gas at
constant pressure ( Cp

s , C p
l and Cp

g respectively) must be a known function of temper-
ature  over  the  whole  temperature  range 0→T . Entropies  determined  this  way  are
known as third law entropies.

Free Energy

The free energy of a system is the energy that is available to do work. The common
forms of  free  energy  are  Helmholz  free  energy which  applies  in  constant  volume
conditions and the Gibbs free energy which applies in constant pressure conditions. 

The Helmholz free energy A is defined as 

A=U−TS (85)
where U is the system internal energy, T is the absolute temperature and S is the 
entropy. The differential form is 

dA=dU−TdS−SdT . (86)

The Gibbs free energy G is defined as 
G=H−TS (87)

where H is the system enthalpy, T is the absolute temperature and S is the entropy.
Since it is a function of both enthalpy and entropy, the free energy (both Gibbs and
Helmholz) is a state function of the system. In what follows we focus mostly on the
Gibbs free energy.

At constant temperature, the relation (87) is often expressed as 
ΔG=ΔH−T ΔS ,    (at fixed T). (88)

From the definition of the enthalpy (50) we can write the Gibbs free energy as 
G=U+PV−TS (89)

where P is the system pressure and V the volume. The differential form of the Gibbs 
free energy is 

dG=dU+PdV+VdP−TdS−SdT . (90)
Under constant pressure dP=0 so (90) becomes 

dG=dU+PdV−TdS−SdT ,       (at fixed P). (91)
At both constant pressure and temperature dP=0 and dT=0 , so (90) then becomes 

dG=dU+PdV−TdS ,      (at fixed P and T). (92)
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We also recognise from equation3 (16) that dU+PdV equals the heat dq input to the 
system, so (92) becomes 

dG=dq−Tds ,      (at fixed P and T). (93)
We also note that, for a reversible process 

dqrev=TdS , (94)

and so (93) can be written as 
dG=dq−dqrev . (95)

It follows that 
dG=0      (fixed P and T). (96)

for a reversible process and
dG<0      (fixed P and T). (97)

So dG is −ve for a spontaneous process. Equation (97) follows because qrev>q for a non
reversible process. 

Like the enthalpy, the free energy Go of the chemical elements at STP is defined to be
zero.

Free Energy of Formation

The standard free energy of formation ΔGf
o of a given chemical compound is the free

energy  change  when  one  mole  of  the  compound  is  formed  from  its  constituent
elements at STP. ΔGf

o is formally given by the equation

ΔGf
o
=ΔH f

o
−T Δ S f

o , (98)

where ΔH f
o is the change in enthalpy for the chemical reaction between the elements

resulting in one mole of the compound and Δ S f
o is the corresponding change in entropy

for the same reaction, both standardised for STP. These are obtained experimentally.
For example, with the enthalpy change obtained using Hess’s law (see equation (63)
and preceding discussion) and the entropy change obtained as a as a difference in
third law entropies of the elements and products (see discussion leading to equation
(84)).

Free Energy and Chemical Equilibrium

Equation (90) may be written as 
dG=dq+VdP−TdS−SdT (99)

and we also note that for a reversible process
dq=dqrev=TdS . (100)

So (99) becomes 
dG=VdP−SdT , (101)

and so at constant temperature 
dG=VdP ,  at fixed T . (102)

For an ideal gas we have

dG=
nRT
P

dP , (103)

and so 

3 In differential form.
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ΔG=nRT log
P2
P1

. (104)

Since G is a state function, equation (104) holds for irreversible processes as well as
reversible  ones.  Given  the  free  energy Go of  a  gas  at  standard  temperature  and
pressure,  equation (104) allows us to write 

G=Go
+nRT logP , (105)

in which P1 , P2 are expressed in atmospheres so that P1=1 and P2=P .

For the chemical reaction 
aA+bB⇔ cC+dD (106)

we have 
ΔG=cGC+dGD−aG A−bGB . (107)

On inserting equation (105) this becomes 

ΔG=ΔGo
+RT log

(PC)
c
(PD)

d

(PA)
a
(PB)

b . (108)

At  equilibrium the  reaction  can proceed no further,  which  means the  free  energy
driving the reaction must be at minimum, so ΔG=0 and (108) becomes 

ΔGo
=−RT logK , (109)

where K is the equilibrium constant 

K=[ (PC)
c
(PD)

d

(PA)
a
(PB)

b ]
eq

  at equilibrium. (110)

It is apparent that a knowledge of the standard free energies of formation of the
reactants and products permits a determination of the equilibrium constant for any
postulated reaction.

Electrical Cells

In an electrical cell we need to allow for the fact that work may be done electrically as
well as by system expansion. From equation (4) we obtain 

dU=dq+dw , (111)
where dw is the infinitesimal work. We can now write equation (90) as  

dG=dq−dw+PdV+VdP−TdS−SdT , (112)
which for processes at fixed T and P becomes 
                             dG=dq−dw+PdV−TdS          (fixed T and P). (113)
For a reversible process, this further reduces to 

dG=−dw+PdV . (114)
As noted above the work done is electrical as well as from expansion so 

dw=dwe+dwPV , (115)

where w e is electrical work and wPV is work done by expansion. We may note that 

PdV−dwPV=0 (116)

since these quantities are the same. Therefore (114) becomes 
dG=−dwe , (117)

and so 
ΔG=−nF Δ E , (118)

13



where F is Faraday’s unit of charge (96,486 coulombs), n is the number of moles of
charge moved and Δ E is the difference in electrical potential  between the electrodes
of the system (i.e. the voltage). Equation (118) allows us to write

ΔGo
=−nF Δ Eo , (119)

where ΔGo is the free energy under STP conditions and Δ Eo is the associated voltage.

The free energy is defined by the chemical state of the system. For a reaction of the 
form given in (106) (in solution) the free energy difference is given by 

ΔG=ΔGo
+RT log

(C)
c
(D)

d

(A)
a
(B)

b . (120)

Combining this with equations (118) and (119) gives 

Δ E=Δ Eo
+
RT
nF
log

[C ]
c
[D ]

d

[ A ]
a
[B]

b , (121)

where [A ] is the concentration of a species A . Equation (121) is known as the Nernst
Equation  and  describes  how  the  voltage  of  an  electrical  cell  varies  with  the
concentrations of the electrolytes.

The Temperature Dependence of Equilibrium

At constant temperature we have 
ΔG=ΔH−T ΔS , (122)

and 
ΔG=−RT logK . (123)

So 

log K=−
ΔH
RT

+
ΔS
R

. (124)

If  the thermal  capacity Cp is  constant at  all  temperatures then both ΔH and Δ S are
constants. In which case, at temperatures T1 and T2

log K2−logK1=−
ΔH
RT 2

+
ΔH
RT 1

, (125)

or equivalently

log
K 2

K 1

=−
ΔH
R (

1
T2

−
1
T 1) , (126)

which describes how the equilibrium constant changes with temperature.

Phase Equilibria

Let G1 be the free energy of a phase 1 and G2 be the free energy of a phase 2. Then at 
equilibrium 

G1=G2  or dG1=dG 2. (127)

Now for a reversible process (see equation (101))
                                             dG=VdP−SdT .              (reversible process) (128)
At equilibrium 

dG1=V 1dP−S1dT=V 2dP−S2dT=dG2. (129)

So 
(V 1−V 2)dP=(S1−S2)dT (130)
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and 

dP
dT

=
ΔS
ΔV

=
ΔH vap

T ΔV
. (131)

This leads to the Clausius-Clapeyron Equation: 

dP
dT

=
1
T

(H g−H l)

(V g−V l)
. (132)

Since 

V g−V l≈V g=
nRT
P

(133)

then 

1
P

dP
dT

=−
ΔH vap

o

n RT2
(134)

or 

d logP
d (1/T )

=−
ΔH vap

o

R
. (135)

Integrating (135) gives 

log
P2
P1

=−
ΔH vap

o

R { 1T 2−
1
T 1 }, (136)

which describes how vapour pressure varies with temperature.

W. Smith
September 2023.
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