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Figure 1. The potential due to a continuous charge
 density distribution ρ .

This note describes the determination of the electrostatic potential at a point P at a
position r⃗ from the origin of coordinates at O , due to a finite, continuous charge
density distribution ρ(u⃗) at position u⃗ as shown in Figure 1. (Note that it  is  not
necessary to pay attention to the form of ρ(u⃗) in what follows.) 

Cartesian Multipoles

Our  first  description  is  based  on  Cartesian  coordinates.  We begin  by  defining  an
element of charge δρ as

δρ=ρ( u⃗)dv , (1)

where δv is  the  volume  of  the  element δρ , and ρ(u⃗) is  the  charge  density
function shown in Figure 1. At a distance u=|u⃗| from the origin of coordinates at O
the potential δΦ at a point P is given by Coulomb´s law as

δΦ=
1

4π ϵ0

δρ

r '
, (2)

where r ' is  the distance between δρ and the point P (see Figure 1).  The total
potential at P is therefore 

Φ=
1

4 πϵ0
∫
ρ

ρ( u⃗)
r '

dv , (3)

in which the integral is over the volume of the distribution ρ(u⃗) . With reference to
Figure 1 and using the cosine formula we may write:

1
r '
=

1

(r2+u2−2 r ucosθ)1/2
, (4)

where θ is the angle between vectors r⃗ and u⃗ in Figure 1. 

We note (for later use) that cos (θ) can be expressed as the scalar product



cos (θ)=
r⃗⋅u⃗
ru

. (5)

Equation (4), may be rewritten as
1
r '
=
1
r
(1+ϵ)−1 /2 , (6)

where

ϵ =( u
2

r2
−
2u
r
cosθ) . (7)

We now make the stipulation that r≫u , or equivalently ϵ≪1 , which means that
the charge distribution is small in relation to the distance r . Then we note that the
binomial theorem gives a well known expansion for the form (1+ϵ)n :

(1+ϵ)n=1+nϵ+
n(n−1)
2

ϵ
2
+
n(n−1)(n−2)

3!
ϵ
3
+
n (n−1)(n−2)(n−3)

4!
ϵ
4
+O(ϵ5) , (8)

which we may use with n=−1/2, giving

(1+ϵ)−1 /2=1−
1
2
ϵ+
3
8
ϵ
2
−
5
16
ϵ
3
+
105
384

ϵ
4
+O (ϵ5) , (9)

where we have arbitrarily truncated the series at the fourth power of ϵ .  

Using the form of ϵ given in equation (7) we can write the powers of ϵ as follows.

ϵ
2
=
u4

r4
−4

u3

r3
cos(θ)+4

u2

r2
cos2(θ),

ϵ
3
=
u6

r6
−6

u5

r5
cos(θ)+12

u4

r 4
cos2(θ)−8

u3

r3
cos3(θ)

ϵ
4
=
u8

r8
−8

u7

r 7
cos (θ)+24

u6

r 6
cos2(θ)−32

u5

r5
cos3(θ)+16

u4

r4
cos4(θ) .

(10)

Inserting these expansions into equation (9) and gathering terms in powers of (u/r )
leads to the following equation.

(1+ϵ)−1 /2=1+cos(θ)
u
r
+
1
2
[3cos2(θ)−1 ]( ur )

2

+
1
2
[5cos3(θ)−3cos(θ)]( ur )

3

+O(u
4

r4 ) (11)

From  (11) it  transpires that the coefficients of powers of  u/r  have the form of
Legendre polynomials Pl(z) (with z=cos (θ) ), which are derived from the formula

Pl(z)=
1
2l l!

d l

(d z)l
(z2−1)l (12)

where l is an integer index. Table 1 below presents a list of Legendre polynomials.

Table 1. Legendre polynomials up to l=3.
l Pl(z) Pl(cos (θ))

0 1 1

1 z cos (θ)

2 (3 z2−1)/2 (3cos2(θ)−1)/2

3 (5 z3−3 z)/2 (5cos3(θ)−3cos(θ))/2

So equation (11) can be written as



(1+ϵ)−1 /2=P0(cos(θ))+P1(cos (θ))
u
r
+P2(cos(θ))

u2

r2
+P3(cos(θ))

u3

r3
+O( u

4

r 4 ). (13)

We thus infer that the infinite series (without truncation) is

(1+ϵ)−1 /2=∑
l=0

∞

P l(cos (θ))( u
l

r l ) . (14)

Substituting (14) back into equation (6) permits us to rewrite equation (3) as

Φ=
1

4 πϵ0
∑
l=0

∞

(
1

rl+1 )∫ρ ρ(u⃗)u
lPl(cos(θ))dv , (15)

which is the formal solution for the potential at point P due to the distributed charge
density ρ . Equation  (15) is  known as  the  multipole  expansion.  Each term in  the
series, indicated by the integer index l , represents a contribution to the potential at
P due to a particular  multipole of  the charge distribution. In practice the series

converges  rapidly  provided  the  region ρ is  small  in  relation  to r (as  stipulated
above) and is therefore usually truncated at some low level multipole. 

We may now examine the potential due to some common multipoles.

i) The monopole term (l=0) :

In this case the contribution to the potential Φ is

Φq=
1

4 πϵ0 (
1
r )∫ρ ρ( u⃗)dv . (16)

From this it is evident that the integral in the term defines the scalar charge q (17).

q=∫ρ ρ(u⃗)dv≡∫ρ ρ(ux , uy ,uz)duxdu yduz . (17)

In  a  system that  is  electrically  charged,  this  is  the  dominant  contributor  to  the
potential at P .

ii) The dipole term (l=1):

Here the potential contribution is

Φd=
1

4 πϵ0 (
1

r2 )∫ρ ρ( u⃗)ucos(θ)dv , (18)

where we have used the Legendre function P1(cos (θ)) from Table 1. Using the scalar
product (5) this can be written as

Φd=
1

4 πϵ0 (
1

r2 )∫ρ ρ( u⃗)u(
r⃗⋅u⃗
ru )dv ,

=
1

4 πϵ0 (
1
r3 ) r⃗⋅∫ρ ρ( u⃗) u⃗ dv .

(19)

From which it is evident that the integral defines a 3 component vector, which is called
the dipole d⃗ (20).

d⃗=∫ρ ρ(u⃗ )u⃗ dv . (20)

In the absence of an overall system charge, the dipole term is dominant.

iii) The quadrupole term (l=2):



Taking the Legendre polynomial P2(cos (θ)) from Table 1 and proceeding as before,
the quadrupole contribution to the potential is

ΦQ=
1

4 πϵ0 (
1

r3 )∫ρρ(u⃗)u
2 1
2
[3cos2(θ)−1 ]dv

=
1

4 πϵ0 (
1
r3 )∫ρ ρ( u⃗)u

2 1
2 [3 ( r⃗⋅⃗u )

2

(ru)2
−1]dv

=
1

4 πϵ0 (
1
r5 )∫ρρ( u⃗)

1
2
[3( r⃗⋅⃗u)2−(ru)2 ]dv

=
1

4 πϵ0 (
1
r5 ) [ r⃗ r⃗ ] :∫ρ ρ(u⃗)

1
2
[3[ u⃗ u⃗ ]−I u2 ]dv .

(21)

In which [ r⃗ r⃗ ] and [ u⃗ u⃗ ] define square 3x3 matrices of the form

[ r⃗ r⃗ ]=[
xx xy xz
yx yy yz
zx zy zz ]  and [ u⃗ u⃗ ]=[

ux ux ux uy ux uz
u yux u yu y uy uz
uz ux uzu y uzuz

] . (22)

We also define the scalar product of matrices A and B as

A :B=∑
i
∑
j

A ijB ij . (23)

The matrix I is the unit matrix, which may be defined by its components:
Iαβ=δαβ , (24)

where δαβ is the Dirac delta function, which is unity when the indices α and β are
identical and zero otherwise. 

The final integral in (21) thus defines a 3x3 matrix called the quadrupole Q (25).

Q=∫ρ ρ(u⃗ )
1
2
[3[ u⃗ u⃗]−I u2 ]dv . (25)

The quadrupole term is dominant where no overall charge or dipole is present.

iv) The octupole term (l=3) :

In this case the contribution to the potential has the form

ΦO=
1

4 πϵ0 (
1

r4 )∫ρ ρ(u⃗)u
3 1
2
[5cos3(θ)−3cos (θ)]dv , (26)

which includes the expansion for P3(θ) from Table 1. Working through as before we
get

ΦO=
1

4 πϵ0 (
1
r4 )∫ρ ρ(u⃗)u

3 1
2 [5 ( r⃗⋅⃗u)

3

(ru)3
−3
( r⃗⋅⃗u)
(ru) ]dv ,

=
1

4 πϵ0 (
1
r7 )∫ρ ρ(u⃗)

1
2
[5( r⃗⋅⃗u)3−3( r⃗⋅⃗u)(ru)2 ]dv ,

=
1

4 πϵ0 (
1
r7 )[ r⃗ r⃗ r⃗ ] :∫ρ ρ( u⃗)

1
2
[5[ u⃗ u⃗ u⃗ ]−3U u2 ]dv .

(27)

In which [ r⃗ r⃗ r⃗ ] is a rank 3 tensor with 27 elements {⃗r r⃗ r⃗ }αβγ of the form

{⃗r r⃗ r⃗ }αβγ=rα rβrγ . (28)

so each element is a product of x , y or z . The tensor U is also of rank 3, with 27
elements of the form



Uαβ γ=δαβuγ . (29)

The elements Uαβγ are zero unless indices α and β are identical, and uγ is one
of ux , uy or uz in order. We also define the scalar product of two rank 3 tensors as
(cf. (23))

A :B=∑
i
∑
j
∑
k

A ijkBijk . (30)

The final integral in (27) defines a rank 3 tensor of dimension 3x3x3 called the 
octupole O (31).

O=∫ρ ρ(u⃗ )
1
2
[5[ u⃗ u⃗ u⃗ ]−3U u2 ]dv . (31)

The octupole is least commonly encountered in practice, but in the absence of an
overall charge, dipole or quadrupole, it is the main contributor to the potential Φ .

The charge q ,  dipole d⃗ ,  quadrupole Q  and octupole O  are the most likely
encountered  of  the  multipoles  in  practice.  Thus  the  potential  (15) may  be
approximated by the following series, truncated with the octupole.

Φ≈
1

4 πϵ0 (
q
r
+
r⃗⋅d⃗
r3
+
[ r⃗ r⃗ ] :Q

r5
+
[ r⃗ r⃗ r⃗ ] :O

r7 ) (32)

Note that the increasing powers of r in the denominator of each term ensures that 
successive terms in the series decrease rapidly in importance.

The above description of the multipoles is termed cartesian due to its dependence on
the  cartesian  components ux , uy and uz .  However,  there  is  a  drawback  to  the
cartesian description on that the number of terms in each successive multipole grows
exponentially  and  soon  becomes  unwieldy  (despite  the  equivalence  of  many
components). Fortunately there is an alternative description possible that makes use
of spherical  harmonic functions Y lm(θ ,ϕ) which requires far fewer components per
multipole. We now explore this possibility.

Spherical Harmonic Multipoles

Spherical  harmonics  arise  naturally  in  physics,  for  example  in  the  solution  of  the
atomic  Schroedinger equation,  or  the Laplace equation in  electrostatics,  whenever
polar coordinates are chosen for a solution. Mathematically they are set of functions
Y lm(θ ,ϕ) of  the  polar  angles θ and ϕ (with  ranges 0≤θ≤π and 0≤ϕ≤2π

respectively), which represent the angular components of polar coordinates (r ,θ ,ϕ) .
The indices l and m associated with each spherical  harmonic are integers in the
ranges: 0≤l≤∞ and −l≤m≤+l .

The spherical harmonics have the functional form
Y lm(θ ,ϕ)=Θl|m|(θ)Φm(ϕ), (33)

where |m| refers to the absolute value of m.  Θl|m|(θ) is  a  normalised function,
meaning  that  when  multiplied  by  itself  and  integrated  over  the  range 0≤θ≤π it
returns a value of unity. The function is closely related to the Legendre polynomials
described in the previous section and is known as an associated Legendre polynomial,
normally  written  as Pl

|m|
(z) , where z=cos (θ) . Examples  of  normalised  functions

Pl
|m|
(z) and Θl|m|(θ) are presented in Table 2 below. 



Table 2. The normalised functions Pl
|m|
(z) and Θl|m|(θ) up to l=3.

l |m| Pl
m
(z ) Θl|m|(θ) ∗

0 0 (1/2)1 /2 (1/2)1 /2 e

1 0 (3/2)1/2 z (3/2)1/2cos (θ) o

1 1 (3/4 )1/2(1−z2)1 /2 (3/4 )1/2sin(θ) e

2 0 (5/8)1/2(3 z2−1) (5/8)1/2(3cos(θ)2−1) e

2 1 (15/4 )1/2 z (1−z2)1 /2 (15/4 )1/2cos (θ)sin (θ) o

2 2 (15/16)1/2(1−z2) (15/16)1/2sin 2(θ) e

3 0 (7/8)1 /2(5 z3−3 z) (7/8)1 /2(5cos (θ)3−3cos(θ)) o

3 1 (21/32)1 /2(1−z2)1/2(5 z2−1) (21/32)1 /2 sin(θ)(5cos (θ)2−1) e

3 2 (105/16)1/2(1−z2) z (105/16)1/2sin 2(θ)cos (θ) o

3 3 (35/32)1/2(1−z2)3 /2 (35/32)1/2 sin3(θ) e

∗ indicates Pl
|m|
(z) is even or odd over the interval [−1≤z≤1] (see below).

The function Φm(ϕ) can be written in a  complex or real representation. It  is also
normalised, in this case over the range 0≤ϕ≤2π , and has the form:

Φm(ϕ)=
1

(2π)1/2
exp(i mϕ) (34)

in the complex representation, and the form

Φm
+
(ϕ)=

1

(4 π)1/2
(exp(i|m|ϕ)+exp (−i|m|ϕ)) if m>0 ,

Φm
−
(ϕ)=

−i

(4 π)1/2
(exp(i|m|ϕ)−exp(−i|m|ϕ)) if m<0 ,

(35)

in the real representation. Alternatively (35) may be written in a trigonometric form:

Φm
+
(ϕ)=π

−1/ 2cos (|m|ϕ) if m>0 ,

Φm
−
(ϕ)=π

−1/2sin(|m|ϕ) if m<0 .
(36)

Note that for both real and complex representations

Φ0(ϕ)=(2π)
−1 /2 . (37)

Some typical real spherical coordinates for low values of l appear in Table 3.

The spherical harmonics form an orthonormal set of functions, meaning they are both
normalised and orthogonal to each other and therefore obey the relation:

∫
ϕ=0

2π

∫
θ=0

π

Y lm(θ ,ϕ)Y l 'm '
∗
(θ ,ϕ)sin (θ)dθd ϕ=δ l l' δmm' . (38)

This  orthonormality  property  means  that  any  angular  function F(θ ,ϕ) can  be
expressed as a sum of spherical harmonics (39):

F(θ ,ϕ)=∑
l=0

∞

∑
m=−l

l

AlmY lm(θ ,ϕ) , (39)



Table 3. Spherical harmonics (real) Y lm(θ ,ϕ) up to l=3.

l m Y lm(θ ,ϕ) .

0 0 (2π)−1 /2

1 -1 (3/4 π)1/2sin (θ)sin (ϕ)

1 0 (3/4 π)1/2cos (θ)

1 1 (3/4 π)1/2sin (θ)cos(ϕ)

2 -2 (15/4 π)1/ 2sin2(θ)sin (ϕ)cos (ϕ)

2 -1 (15/4 π)1/2cos (θ)sin(θ)sin(ϕ)

2 0 (5/16π)1 /2(3cos2(θ)−1)

2 1 (15/4 π)1/2cos (θ)sin(θ)cos(ϕ)

2 2 (15/16π)1 /2 sin2(θ)(cos2(ϕ)−sin2(ϕ))

3 -3 (35/32π)1/2sin3(θ)sin (ϕ)(3cos2(ϕ)−sin2(ϕ))

3 -2 (105/4 π)1/2cos (θ)sin2(θ)sin(ϕ)cos (ϕ)

3 -1 (21/32π)(5cos2(θ)−1)sin(θ)sin(ϕ)

3 0 (7/16 π)1 /2(5cos3(θ)−3cos (θ))

3 1 (21/32π)(5cos2(θ)−1)sin(θ)cos(ϕ)

3 2 (105/16π)1 /2 cos(θ)sin2(θ)(cos2(ϕ)−sin2(ϕ))

3 3 (35/32π)1/2sin3(θ)cos (ϕ)(cos2(ϕ)−3sin 2(ϕ))

where the coefficient Anm is obtained from the integral

A lm=∫
ϕ

2π

∫
θ=0

π

F (θ ,ϕ)Y lm
∗
(θ ,ϕ)sin(θ)d θd ϕ . (40)

A useful  consequence of  the expansion  (39) is  the  addition theorem for  spherical
harmonics, which is as follows.

Given  two  unit  vectors â and b̂ defining  unit  displacements  from  the  origin  of
coordinates, we have that

â⋅b̂=cos(θab) , (41)

where θab is the angle between the two vectors. The addition theorem states  that
for any Legendre polynomial Pl(cos (θab)) the following expansion holds:

Pl(cos (θab))=
4 π

(2l+1)
∑
m=−l

l

Y lm( â)Y lm
∗
(b̂) . (42)

In which

Y lm(â)≡Y lm(θa ,ϕa)  and  Y lm(b̂)≡Y lm(θb ,ϕb) , (43)

meaning the value of the spherical harmonic in the direction of â or b̂ .

We may use (42) in conjunction with equation (15) for the electrostatic potential if we
replace the vectors â  and  b̂ with the unit vectors û and r̂ directed along  u⃗
and r⃗ respectively. This allows (15) to be written as



Φ=
1

4 πϵ0
∑
l=0

∞

(
1
rl+1 )

4 π
(2 l+1)

∑
m=−l

l

∫
ρ
ρ( u⃗)ulY lm

∗
(û)Y lm( r̂)dv . (44)

The integral in (44) is over the range of the charge density ρ(u⃗) i.e. over the range
of the vector u⃗ . So we may define the spherical harmonic multipole M lm as

M lm=
4 π

(2l+1)
∫ρ ρ(u⃗)u

lY lm
∗
(û)dv , (45)

or equivalently, using the polar coordinates (u ,θ ,ϕ) of vector u⃗ ,

M lm=
4 π

(2l+1)
∫ρ ρ(u⃗)u

l+ 2Y lm
∗
(θu ,ϕu)sin(θu)dud θud ϕu . (46)

This result allows us to write (44) as

Φ=
1

4 πϵ0
∑
l=0

∞

(
1
rl+1 )∑m=−l

l

M lmY lm( r̂) . (47)

Equation  (47) is  the  expansion  of  the  potential  in  terms  of  spherical  harmonic
multipoles. This is a more convenient expansion than the cartesian form  (15) since,
at each level of the index l there are only 2l+1 terms to evaluate compared with
the 3l  terms of cartesian expansion.

We note that  (47) is commonly written as

Φ=
1

4 πϵ0
∑
l=0

∞

(
1
r l+1 )∑m=−l

l

M lmY lm(θ ,ϕ) , (48)

which is consistent with the charge distribution ρ(u⃗) being at, or extremely close to,
the origin of coordinates. We may indeed assume that the origin of the coordinates is
at some convenient point in the charge distribution, such as its centre of mass. Lastly
we note that equations  (38) to  (48) are also valid for the real spherical harmonics,
except that there is no distinction between a normal spherical harmonic Y lm(θ ,ϕ) and

its complex conjugate Y lm
∗
(θ ,ϕ) .

Obtaining Multipoles from Molecular Orbital Calculations

Multipoles may be calculated using molecular orbital theory. The formal expression of
the calculation of a multipole M lm is given by the expectation value 

M lm=⟨Ψ
∗ |M̂ lm|Ψ ⟩ , (49)

in  which Ψ is  the  molecular  wavefunction and M̂ lm is  the  so  called  multipole
operator which is a sum of single-electron multipole operators

M̂ lm=∑
j=1

2 No

M̂ lm( j) . (50)

It is assumed here that we are dealing with a closed-shell system (which applies to
most  molecules)  and  there  are No electrons  of  alpha  spin  and No of  beta  spin,
making 2N o electrons in all. The sum over j in (50) ranges over all electrons. The
operator M̂ lm( j) is the multipole operator for the j ’ th electron, which we may write
as

M̂ lm( j)=
4 π

(2 l+1)
u j
l Y lm

∗
(θ j ,ϕ j), (51)

where  the  variables (u j ,θ j ,ϕ j) are  the  polar  coordinates  of  the  electron’s  position
vector u⃗ j , defined with respect to some convenient origin. The fact that all electrons



are equivalent means that we need evaluate the integral  (49) for just one indexed
electron (e.g. j=1 ) and write

M lm=2N o ⟨Ψ
∗ |M̂ lm(1)|Ψ ⟩ (52)

To go further, we must expand Ψ into a molecular orbital representation i.e. into
molecular orbitals: {ψi : i=1 ,… ,No }, where each orbital is occupied by two electrons of
opposite spin. Here on, we will use the notation: ψi and ψ̄i to indicate the alpha
and beta spin components of the i ’ th  molecular orbital (these are known as  spin
orbitals). 

The standard form for Ψ is

Ψ=η∑
p

(2N o)!

(−1)pP {ψ1 ψ̄1…ψN o
ψ̄No
}, (53)

which is  a sum of  antisymmetric  permutations  of  the 2N o electrons between the
No molecular orbitals.  The antisymmetry is signalled by the factor (−1)p and is

necessary  to  satisfy  the  Pauli  exclusion  principle.  This  is  the  so-called  Slater
determinant form of the  molecular wavefunction.  The normalisation constant η  has
the value η=({2N o}!)

−1 /2 .

Inserting  (53) into  (52) results  in  a  loss  of  many integration terms,  because the
different permutations in (53) will have at least two electrons in different spin orbitals
and the integration over the coordinates of these electrons means the term has to be
zero. The final result is that (52) collapses to

M lm=2∑
i=1

N o

M lm
i , (54)

in which the index i refers to a molecular orbital ψi and M lm
i is the integral

M lm
i
=∫ψi

∗
(1) M̂ lm(1) ψi(1)d τ1 , (55)

in which the element d τ1 indicates that the integration is over both the spatial and
spin  coordinates  of  the  electron.  Equations  (54) and  (55) formally  represent  the
solution to calculating any required molecular multipole M lm , but it is not practical
without knowledge of the form of the molecular orbitals ψi .

In the LCAO (Linear Combination of Atomic Orbitals) approximation, the molecular
orbitals are assumed to resemble a sum of the atomic orbitals of the atoms of the
molecule. Thus we have

ψi=∑
μ=1

N

cμ iχμ , (56)

where χμ is an atomic orbital, N≥N o is the number of atomic orbitals available to
participate in the molecular orbitals and cμi is a coefficient describing the degree to
which the atomic orbital χμ contributes to the molecular orbital ψi . Inserting  (56)
into (55) gives the result

M lm
i
=∑
μ=1

N

∑
ν=1

N

cμi
∗ cν iM lm

μ ν , (57)

where 

M lm
μ ν
=∫χμ

∗
(1) M̂ lm(1)χν(1)d τ1 . (58)



This integral represents the multipole arising from a charge distribution χμ
∗
(1)χν(1)

and  its  definition  is  independent  of  the  molecular  orbital ψi since  it  is  a  purely
atomistic integral. But note χμ and χν may, in general, reside on different atoms.

Inserting equation (57) into (54) gives

M lm=2∑
μ=1

N

∑
ν=1

N

∑
i=1

N o

cμ i
∗ cν iMlm

μν , (59)

where we have moved the sum over index i inside the sums over μ and ν , which
allows us to define the so called population matrix Pμν as

Pμν=2∑
i=1

No

cμ i
∗ cν i , (60)

which is a sum over all the occupied molecular orbitals in the molecule. It follows that
equation (59) may be written as

M lm=∑
μ=1

N

∑
ν=1

N

Pμ νM lm
μ ν . (61)

Molecular  orbital  calculations  based  on  the  LCAO  approximation  provide  the
coefficients cμi from  which  the  population  matrix PΜν may  be  calculated.  A
knowledge of the set of atomic orbitals {χμ} allows  the calculation of integrals (58)
(at  least  in  principle)  of  the  multipole  terms M lm

μ ν , thus  solving  equation  (61).
Inevitably, the calculations are non-trivial and approximations are advantageous.

There  are  two  main  issues.  Firstly,  the  result  (61) is  the  multipole  for  an  entire
molecule, which may be useful for a small molecule but less so for a large one, where
a set of  distributed multipoles placed at different sites in the molecule might be  a
better  option  for,  for  instance,  calculating  intermolecular  interactions  by  classical
methods.  Secondly,  it  is  common  in  molecular  orbital  calculations  to  reduce  the
computational burden by neglect of those integrals which actually make a negligible
contribution to the overall result. The computational saving this enables makes this a
very attractive option.

One approach that  addresses  both issues is  to  neglect  any  integral  involving two
atomic  orbitals  on  different  atoms.  This  means  all  the  surviving  multipole  terms
M lm
μ ν , are necessarily single atom integrals. Applying this idea to (61) leads to

M lm
A
=∑
μ=1

on A

∑
ν=1

on A

PμνM lm
μν , (62)

in which M lm
A is a site multipole on atom A and all the contributing integrals M lm

μ ν

involve atomic orbitals χμ and χν sited on atom A . Note that in (62) it is logical to
put  the  origin  of  coordinates  on  the  atom  for  which  the  site  multipole  is  being
calculated. Only if the molecule is small, may we approximate the molecular multipole
by a sum of the site multipoles, as in

M lm=∑
A=1

N A

M lm
A , (63)

in which N A is the number of atoms in the molecule. 


