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Introduction

In Newton’s treatise, the Principia (1687), the author described an experiment he had
devised  to  demonstrate  the  difference  between  relative  and  absolute  motion.
Characteristically, it was a simple experiment, but from it he drew deep insights into
how our universe worked. His experiment consisted of a bucket of water suspended on
a length of string tied to the handle. He twisted the bucket around many times until
the string was extremely coiled and then let the bucket go. The bucket began to spin.
Initially the water remained still  and the surface stayed flat, but after a while the
bucket passed its motion to the water which also began to spin. Gradually the water
climbed the walls of the bucket and the surface curved into the shape of a parabola.
Newton  deduced  from this  that  the  water  had  acquired  an  absolute  motion  with
respect to the universe, which was signalled by the change in the water surface and
that this was physically different from the relative velocity of the bucket and the water
at the start of the experiment.

Insightful as this experiment was, when I first came across it, my question was why
the spinning surface of the water was a parabola and not some other shape? Curious
to find out, I set about deriving the surface shape for myself, using the physical laws
Newton himself had devised. I came up with two solutions which are presented here
for readers who might be equally curious about such phenomena and also to point out
an interesting connection with astronomical telescopes.

Method 1. The floating test particle

In this method we imagine a small particle, of mass m ,  floating on a liquid surface.
If the surface is flat and undisturbed, the particle will remain stationary. This is easy
to understand. The forces acting on it - the particle’s weight and the upthrust from the
liquid - are equal and opposite and so cancel out one another (Archimedes c. 287–212
BC). A similar stasis also occurs in Newton’s bucket. When the spinning surface has
achieved a stable shape, the particle holds a fixed position on the liquid surface. But
the forces on the particle in this case are now subtly different.

Figure 1. The particle P on the spinning surface
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Figure 1 shows this phenomenon at a fixed instant in time. The liquid surface S is
spinning about the vertical axis OY with an angular velocity ω . An axis OX is drawn
perpendicular to the axis OY, such that the plane containing both axes also contains
the particle at the time instant concerned. The two axes therefore define a frame of
reference in which we may specify the position of particle P using coordinates (x , y ) ,
where x is the particle’s radial distance from the axis of spin, and y is the vertical
position of the particle. The point O in the figure is the origin of the reference frame at
coordinates (0,0) .

The particle P in this circumstance is subject to the same two physical forces as before
(shown in red in Figure 1). The first is its own weight −mg (where m is the particle
mass and g is the acceleration of gravity), which acts vertically downward as before.
The second force is the upthrust R from the liquid surface, which acts in a direction
perpendicular to the liquid surface. However, it no longer acts wholly in the vertical
direction.  In  fact  the  force R may be  resolved  into  two  components: Ry acting
vertically  in  opposition  to  the  particle’s  weight,  and R x acting  horizontally  and
providing the centripetal force, so that the two components acting together hold the
particle in position on the surface. Therefore the components (which are drawn in
black in Figure 1) can be written as

Rx=−mω
2x ,  and R y=mg. (1)

In Figure 1 we have defined an angle θ between the force R and R y , so that we
may write the ratio of R y and R x as

R y
Rx

=−
g

ω
2 x

=tan (θ+π/2) , (2)

where θ+π/2 is  the  angular  direction  of  the  vector R in  the  reference  frame.
However, from standard trigonometry

tan (θ+π/2)=−
1
tan θ

. (3)

So from equations (2) and (3) we can see that

tan θ=
ω
2 x
g
. (4)

Now, if the tangent to the curve S is drawn at P (the blue line in Figure 1), this is
necessarily  perpendicular  to R and from that it  follows that the tangent is  at  an
angle θ to the horizontal. So from (4) we can write for curve S

tan θ=
dy
dx

=
ω
2 x
g
. (5)

Integrating equation (5) over x gives
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y= ω
2

2g
x2+c , (6)

where c is  an  arbitrary  constant  that  depends  on  where  the  origin  O  of  the
coordinates is set. Equation  (6) is of course a parabola. So the curve defining the
liquid surface in Newton’s bucket is indeed parabolic.

Method 2. Using the liquid pressure/depth relation

Figure 2. Calculating the pressure at position P beneath the liquid surface.

This approach is based on the well known expression for the pressure p in a liquid of
density ρ at a depth h below the surface, which is

p=ρhg . (7)

We can use this to calculate the shape of the surface as follows.

Figure 2 represents the spinning surface, frozen at an instant in time. Axes OX and OY
define  the  coordinate  frame,  as  before.  The point  P  below the  liquid  surface  has
coordinates (x , y ) and is the centre of a small cubic volume of liquid with dimensions
δ x ,δ y ,δ z . The volume δV  of this cube is given by the formula

δV=δ x δ yδ z (8)

and the mass δm of this volume of liquid is obtained from the density ρ and the
volume conjointly as

δm=ρδV=ρδ xδ y δ z . (9)

Since the liquid is static with respect to the rotating frame, this mass rotates in a
circle around the spin axis OY and must be held in place by a centripetal force δ f of
magnitude δmω

2 x , which equation (9) allows us to write as

δ f=ρω
2 xδ x δ y δ z (10)
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The origin of this force is the pressure difference between the parallel vertical faces of
the cube at the positions x+δx /2 and x−δ x /2. These two faces having the same
area: δ y×δ z . According to equation  (7) the pressure difference δ p between the
faces  arises  from the  difference  in  the  surface  heights  at  positions x−δ x /2, and
x+δx /2 , which we write as 

δ p=ρg( y (x+δx /2)− y (x−δ x /2)) . (11)

The force δ f holding the mass δm in place is the pressure δ p multiplied by the
area δ y×δ z , which gives

δ f=ρg( y (x+δ x )− y (x−δ x))δ yδ z . (12)

 
Note that, since the height of the curve at x+δx /2 is greater than at x−δ x /2 at P, it
follows that this force acts towards the axis OY. This is the force identified above as
the centripetal force (10), so from (10) and (12) it is apparent that

( y (x+δ x /2)− y (x−δ x /2))
δx

=ω
2

g
x , (13)

which in the limit as δ x→0 becomes

dy
dx

=ω
2

g
x . (14)

This  is  the  same as  equation  (5) and so  integrates  to  the  same result  (6),  thus
proving once again the parabolic shape of the spinning surface.

The Parabola Focus and Directrix

Figure 3. Properties of a parabola.
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A parabola is formally a conic section, which is a curve for which the distance of every
point  P  on  the  curve,  from  a  fixed  point  (the  focus),  is  in  a  fixed  ratio  to  its
perpendicular distance from a straight line (the  directrix). This is expressed in the
equation

e=
d f
dd
, (15)

where d f is the distance of the point P from the focus and dd is its perpendicular
distance from the straight line. The eccentricity e is a positive number, which for a
parabola is e=1 , for an ellipse is e<1 and for a hyperbola is e>1. For our purpose
here we focus on a few properties of the parabola.  

Consider Figure 3. The red curve S is a parabola, line DD’ is the (horizontal) directrix
and F is  the focus. Point P is on the parabola and the line PD is a perpendicular
dropped to the directrix. It follows from Equation (15) that the distance PD equals FP
since e=1.  Likewise, the perpendicular line dropped from F to the directrix at O cuts
the parabola at C so that lengths FC and CO are also equal. Point C is the closest point
on the parabola to the focus and the line FO lies on the principal axis of the parabola. 

Line TT’ is drawn to bisect the angle FPD into equal parts and is the tangent to the
curve  at  P.  This  makes  an  angle θ to  the  horizontal.  Line  NP  is  drawn  as  a
perpendicular to line TT’ at P and the line AP is drawn as a linear extension of line PD.
It  follow  that  angle  APT’  is π /2−θ , and  since  angle  NPT’  is  a  right  angle  by
construction, angle NPA must be equal to θ .

Angle APT’ is equal to angle TPD, as corresponding angles, and angle TPD is equal to
angle TPF by construction. So angles TPF and APT’ are equal. It therefore follows that
angle NPF is also equal to θ and thus line NP bisects the angle APF into equal parts.
From this result we can therefore say that a light ray travelling parallel to the principal
axis and striking a parabolic mirror of this form at P will, by the laws of reflection, be
reflected towards the focus. This is true for all points P. This is the basis for using
parabolic mirrors in telescopes.

If we have an equation of a parabola in the form

y=Ax2 , (16)

this curve passes through the origin at (0,0) which corresponds to the lowest point
on the curve. For this equation, the focus is perpendicularly above the origin. Both the
origin and focus lie on the principal axis.

We can determine the focus and directrix as follows. For a point P=(x ' , y ') on the
parabola (with x '≠0 ) we have

y '=A (x ')2 , (17)

and by differentiation
tanθ=2 Ax ' . (18)

By inspection of Figure 3 it can be deduced that the height f of the focus above the
origin at (0,0) is given by

5



f= y '+
x '

tan 2θ
,   i.e.  f= y '+x '

1−tan2θ
2 tan θ

. (19)

Substituting for y ’ and tan θ using equations  (17) and  (18) and cancelling terms
gives the result

f=
1
4 A

. (20)

For a parabola the directrix is the same distance below the origin i.e. at −f .

In the case where A=ω
2
/2g we would obtain

f=
g

2ω2
.

(21)

This parameter is the focal length of a parabolic mirror made by spinning.

Application to Telescope Mirrors

The relevance of Newton’s bucket to telescopes is obvious to any astronomer. The
common Newtonian telescopes use a mirror to gather and focus the light and the
required shape for that mirror is parabolic. So there naturally arises a question of how
to use the idea of a spinning liquid surface in a real telescope.

It seems unlikely that anyone would make, use or even want a telescope that was in
any way spinning,  particularly  when it  is  realised that  such a telescope would be
confined to looking straight up into the sky! This limitation could, however, be offset
somewhat by having the viewer work off the principal axis, as Herschel did with his 40
foot telescope. So it turns out that somebody has actually done this. The Large Zenith
Telescope that once existed in British Columbia in Canada, sported a 6 metre mirror
made from liquid mercury! However, it was largely an experimental device and not
used for practical astronomy.

Figure 4. Polishing an astronomical mirror in the SOML.
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A more  practical  application  of  the  idea  is  in  the  manufacture  of  glass  telescope
mirrors, as is done at the Steward Observatory Mirror Laboratory (SOML), beneath the
Wildcats football stadium(!) in Tucson, Arizona. There a vat of molten glass is slowly
rotated in a circular mould as it cools to a solid glass parabola. Mirrors up to 8.4
metres in diameter are manufactured and these have been installed in some of the
largest astronomical telescopes in the world. If an observatory boasts a telescope with
a mirror 8 metres wide, there’s a good chance it’s a mirror made in the SOML. You
may ask why stop at 8.4 meters? Because anything larger could not get out of the
building! It’s housed in a football stadium after all, not a purpose built factory. 

The great advantage of spinning glass to make mirrors is that it greatly reduces the
amount of time it requires to polish the mirror to optical perfection. Prior to this, a flat
‘blank’ mirror had to be ground for an inordinate amount of time to a parabolic shape
and in the process it was necessary to remove a huge amount of glass (see below).
Now that a large mirror can be shaped accurately by spinning, this is no longer so
tedious. However, a measure of fine polishing is still required to perfect the surface
(see Figure 4).  All  this  was the brain  child  of  Roger Angel,  a British born Oxford
graduate and presumably, a Newton acolyte.

It is interesting to attempt to design a telescope mirror, based on what we know.
Suppose we want an 8 metre diameter mirror with a focal length of 80 meters, which
would make it an F10 mirror, suitable for a large Cassegrain telescope. 

The equation for this mirror surface is equation (6) with c=0 i.e. 

y= ω
2

2g
x2 . (22)

The key engineering parameter we need to know is the rate of rotation of the vat
holding the molten glass to obtain the required focal length. Rearranging equation
(21) gives us

ω
2
=
g
2 f
. (23)

In metric units, g=9.81 m / s2 and we have f=80 m . The result from equation (23) is
ω=0.24761 rad /s , or 2.36454 rpm . This  is  fortunately  a  low  speed  of  revolution,

given the mass of glass being spun (see below).

A useful alternative to the form (22) is obtained by replacing ω
2 in  (22) using (23)

to express the equation of the surface purely in terms of the focal length:

y=
x2

4 f
. (24)

What amount of glass do we require? A useful parameter for assessing this is the
vertical  height h from  the  centre  of  the  mirror  to  the  outer  rim.  This  is  easily
determined.  Writing  the  diameter  of  the  mirror  as D , the  height  of  the  rim  is
obtained from (24), it is:
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h=
D2

16 f
. (25)

Thus for our 8m diameter mirror, we obtain h=0.05 m. From this we may work on
the premiss that the thickness T of the slab of molten glass required is of the order
of 2h , which would ensure that the parabolic surface could not reach down to the
base of the slab and compromise the lower surface. Other considerations may also
apply, such as giving the slab extra thickness for rigidity or a honeycomb structure to
reduce weight. Our calculation is therefore merely indicative. Based on our calculation
of h , we will set T=0.1 m. The volume of glass required is therefore

V=π
4
T D2 . (26)

The  calculated  volume  is V=5.0265 m3 . Given  the  density  of  glass ρ of,  say,
2500 kg /m3 (this varies with the composition of the glass) we calculate the mass
M of the mirror using

M=ρV , (27)

which gives a mass of 12566 kg or 12.566 metric tonnes.

A useful quantity to know is the volume V 0 of the bowl of the mirror, which we may
think of as the volume of glass that would have to be ground away to make the mirror
from a cylindrical slab of glass. We can calculate this by subtracting the volume of
glass remaining beneath the surface from a circular slab of diameter D and height
h . Using equation (24) we obtain the following equation 

V 0=
π
4
D2h− π

2 f
∫
x=0

D /2

x3dx , (28)

which becomes on integration

V 0=
π
4
D2(h− D2

32 f ). (29)

For a mirror with our specification we obtain the result V 0=1.2566 m
3 , which implies

the removal of 3,142 metric tonnes of glass. So grinding out the surface mirror from
a blank disk  of  glass  would indeed be a formidable  task.  A further  advantage of
knowing V 0 is that we now know the mirror needs 3,142 metric tonnes less glass
that we originally estimated.
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