
Spectroscopy and Binary Stars

Despite the large and frequently unknown distances between Earth and the
stars we know a great deal about binary star systems, even if the stars cannot
be optically separated and appear as a single star under magnification. This
has been made possible due to the science of spectroscopy. This note provides
some insight into how this is done.

In what follows, some simplifications are applied in order to bring out essential
details. Most prominent is the assumption that the stars in the binary system
follow circular orbits. This clearly is not true in general, but it is very common,
because the tidal force between the stars tends to degrade elliptical orbits so
they  become more  circular  in  time.  So  to  begin  with,  it  is  appropriate  to
introduce some of the properties of circular orbits.

Circular Orbits

Figure 1. Binary Stars in a Circular Orbit

When we say two stars are orbiting each other in a circular orbit (Figure 1), it
means that each star is following its own circular orbit1 about their common
centre of mass (COM). Furthermore a line from the centre of each star passes
through the COM so the stars orbit 180 degrees apart, as Figure 1 shows. Note
also that both orbits lie in the same flat plane in space.

If the masses of the two stars are m1 and  m2  and their respective distances
from the COM are r1 and r2 ,  the COM is effectively defined by the relation

m1r1=m2 r2 , (1)

1 If the stars have the same mass, their orbits will be identical.
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which we can rearrange to give

r2=
m1
m2
r1 . (2)

The total separation r between the star centres is

r=r1+r2. (3)

Inserting equation (2) into equation (3) and rearranging gives the relation

r1=(
m2

m1+m2 )r . (4)

Similarly it can also be shown that

r2=(
m1

m1+m2 )r . (5)

If the stars follow a circular orbit then according to Newton’s laws of mechanics
a centripetal force Fcentripetal is required to maintain the orbit. For the star of mass
m1 this must take the form

Fcentripetal=m1r1ω
2 , (6)

where ω is the angular velocity of the orbital motion which is defined to be

ω=2π/P , (7)
where P is the orbital period (the time required to make one full orbit). Note
that from the relation (1) equation (6) could equally well be written as 

Fcentripetal=m2r2ω
2 . (8)

So the centripetal force is the same for both stars.

The gravitational force Fgravity acting on both stars is given by Newton’s law of
gravitation as

Fgravity=
Gm1m2
r2

, (9)

where G is the universal gravitational constant. 

It is this force that supplies the centripetal force necessary to maintain the
circular orbital motion and so we have 

Fcentripetal=F gravity . (10)
From equations (6) and (9) it follows that for the star 1 with mass m1

m1r1ω
2
=
Gm1m2
r2

. (11)

 Using Equation (4) to substitute for r1 in (11) gives

2



(
m1m2
m1+m2 )rω

2
=
Gm1m2
r2

. (12)

We can  replace ω with  the  orbital  period P using  the definition  given  in  (7).
Inserting this into (12) and rearranging gives the result

M=(m1+m2)=
4 π r3

GP2
, (13)

where M is the total mass of the binary system. In cases where the stars can
be optically separated (i.e. appear as distinct stars in a telescope), the period
P and the separation r can be determined by direct observation. Thus (13) can
be used to determine the total mass of the binary system, which is a surprising
achievement in itself.

When the stars are not optically separable we can still make progress, but we
need the assistance of spectroscopy. In fact spectroscopy may be the only way
in some cases to reveal that an apparently single star is in fact binary.

Spectroscopy and Binary Stars
The most important observation that can be made with a spectroscope is to
reveal  the presence of  distinct,  narrow lines at  specific  wavelengths in the
spectrum which are characteristic of the chemical elements that constitute the
stars. This is invaluable in itself but equally important is the fact that the lines
invariably show a Doppler shift, which allows the determination of the speeds
of stars in space relative to an observer.

The Doppler shift is an observed change in the emitted wavelength of light
when the light source is receding away, or advancing towards, the observer.
This phenomenon is described by the Doppler formula:

δλ
λe

=
λo−λe

λe
=
u
c
, (14)

where λe is the wavelength of light emitted  by the source, λo is the wavelength
of the light received by the observer, u is the speed of the light source and c is
the speed of light. The formula thus expresses the change in the wavelength
δλ  as a function of the speed. If u is positive (i.e. the source is receding away
from the observer), δλ is  also positive and so the observed wavelength λo is
greater than the emitted wavelength λe .  This is called red shift. If u is negative
(i.e. the source is advancing towards the observer) then δλ is negative and the
wavelength λo is  smaller  than the emitted wavelength  λe . This  is  called  blue
shift. 

Applying  the  Doppler  formula  (14) to  the  lines  seen  in  star  spectra  will
sometimes reveal there are components with  different Doppler shifts, which
would indicate that more than one star is present and that they are moving
with respect to each other. Furthermore, using equation (14) the speed of each
component can be determined directly  from the shift δλ , which is  vital  data
concerning the dynamics of the stars of the binary system. 
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However there is a complication. Spectroscopy reveals the speeds u1 and u2 of
the stars relative to the observer and not the orbital speeds v1 and v2 relative to
the COM of the binary system. Furthermore even if the speed of the COM were
known and subtracted, the speeds obtained would not be the orbital speeds
but  some  component  of  them.  The  dynamics  of  the  binary  system is  not
therefore immediately accessible. We tackle this issue in the following session.

Determining the System Properties
From a dynamical perspective the binary system (with assumed circular orbits)
is completely determined when we know the following: the period of the orbit
P;  the separation between the stars r ;  the stellar masses m1 and m2; and finally
the inclination of the binary orbit with respect to the line of sight from the
observer to the COM. From these parameters all other dynamical properties of
the system may be obtained. However, to accomplish this the system must be
observed for a significant period of time - at least a period long enough to
observe systematic changes in the spectral data2. It is then that the period P
can be determined.

Figure 2. Speeds u1 and u2 plotted against time

A plot  of u1 and u2 against  time is  shown in  Figure  2.  These are  the  speeds
determined from the spectrum and refer to the recession or advance of the
stars.  The periodicity  due to  the circular  orbit  of  the  stars  is  evident.  The
horizontal line drawn at the speed uc is where the two plots intersect at regular
intervals of time. This is the place where the two stars have the same velocity
in  the  direction  of  the  observer.  At  such  places  the  orbital  motion  is
undetectable by spectroscopy because it is perpendicular to the line of sight. It
follows that the speed uc must be the speed of the centre of mass of the binary
star  system  with  respect  to  the  observer  and  the  interval  between  each
intersection  is  half  the  period P of  the  orbit.  Equivalently  we may say  that

2 Since these are very close binary stars, one may hope that the time period is short.
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successive maxima or successive minima in the plot mark out the period of the
orbit. Either way, P becomes a known quantity.

The maximum and minimum values of the plots of u1 and u2 minus the velocity
uc  are the maximum and minimum speeds (respectively) of the stars along the
direction of the observer. More generally, if we define the angle of inclination of
the orbital plane with respect to the observer direction as i we can say that 

v1 cos i=u1−uc  and v2 cos i=u2−uc , (15)

where v1 and v2 are the constant, circular velocities of stars 1 and 2 respectively.
Rearranging (15) gives3

v1=(u1−uc)/cos i  and v2=(u2−uc)/cos i . (16)

Which determines  the  orbital  speeds  from the spectroscopically  determined
speeds u1 , u2 and uc .Unfortunately, we do not know the angle of inclination, but
if the binary star is of the eclipsing variety, we can reasonably assume that i is
near to zero, since the plane of the orbit is demonstrably near to the observer
line. In which case the speeds v1 and v2 will be reasonably accurate. 

If  no eclipses occur in the period P ,we can take a statistical  approach and
assume an average value for i based on the probability of the orientation of the
orbital plane with respect to the observer line.  A value of i∼30o  will do for an
estimate. 

A knowledge of i , v1 and v2 will allow a calculation of the system mass. We know
that for a circular orbit: 

Pv1=2π r1     and    Pv2=2π r2 . (17)

 Using these relations in Equation (3) leads to

r=
P
2π

(v1+v2) (18)

Then substituting Equation (18) into Equation (13) and  rearranging gives: 

M=m1+m2=
P(v1+v2)

3

2πG
. (19)

So the total mass M=(m1+m2) is now a known quantity. 

For a circular orbit v=ω r , so we can easily show from (1) that

m1 v1=m2 v2     (20)

 Using this to replace v2 in Equation (19) and isolating m2 on the left gives:

m2
3
=
Pv1

3

2πG
M 2 . (21)

3 Clearly this result is indeterminate when i=±90o but then both v1−vc and v2−vc are zero 
and spectroscopy cannot provide an answer.
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Thus m2 is determined from known quantities on the right. The mass m1 is then
obtained  by  subtracting m2 from  the  total  mass M .We  now  have  all  the
quantities we sought.

By such methods it has been possible to match the spectral types of stars in
general with their masses and so underpin the theories explaining the origins
and internal structures of stars.

W. Smith

Sept. 2023
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