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Introduction

When a small drop of liquid is placed on a flat surface1 it may spread out into an
infinitesimally thin sheet or remain where it is placed and gather into a regular shape.
There are many common examples of this. A water drop placed on a sheet of glass
will often spread out continuously, wetting the surface, or it can gather into a shape
resembling a plano-convex lens – a circular disk with a flat bottom and a curved top.
A drop of the liquid metal mercury, on most surfaces, collects into a near spherical ball
that can appear to roll across the surface quite efficiently. Water can also can do this,
when it is placed on a polymer surface or when placed carefully on the surface of
water that is saturated with detergent. The behaviour can be surprising. What is the
physical process that determines what happens? 

The answer lies in the phenomenon of surface tension. It is not confined to liquids, but
it is most often noticed in systems involving a liquid component. It arises because all
substances are internally bonded by molecular forces, so that the molecules within
attract each other and hold the entire system together. Sometimes these forces are
strong enough to make the substance solid and hold its shape when external forces or
high temperatures are applied. Sometimes the forces are so weak that the molecules
are easily  separated  from each other  by a  gentle  increase in  temperature.  These
systems are gases. For intermediate strength inter-molecular forces, the molecules
attract one another but are unable to hold the bulk substance into a fixed shape. This
is  the  liquid  state.  The  different  states  of  matter:  solids,  liquids  and  gases,  are
therefore distinguished by the strength of the inter-molecular forces within. But note
that in all cases, the forces are attractive.

A molecule  deep in  the bulk substance experiences forces from all  directions.  On
average these forces are symmetrical, which means the molecules are not pulled in
any particular direction. However, molecules near a surface, with no substance on the
other side, experience a greater attraction towards the bulk than towards the void.
This means molecules at the surface are preferentially pulled inwards and the surface
becomes stiffer as a result. This is the phenomenon of surface tension. This effect can
also occur at an interface between two different substances: the molecules near the
interface (on both sides) experience a different force from across the interface than
they  do  from their  own bulk,  so  in  this  case  as  well,  an  inter-facial  tension  will
inevitably arise.

How can  we  define  surface  tension  so  we  can  treat  it  mathematically  and  make
quantitative measurements? There are two physically equivalent approaches, which
we now describe. 

Surface Tension – a Surface Force Description

The first definition requires us to draw a line on the surface and imagine the forces
acting on either side it. Normally these forces would be equal and opposite, so there is
no bulk motion. In this case the surface tension is defined as the force that acts to

1 Note that throughout this essay, we will not consider the effects of gravity upon the drop.
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one side of the line drawn on the surface. Using this definition, the force T acting to
one side a line of length L is given by the formula:

T=−τ L , (1)

where τ is the coefficient of surface tension i.e. the force per unit of length. It is an
intrinsic property of the substance constituting the surface and can be determined by
relatively simple experiments, most notably using the phenomenon of capillarity. Note
that the surface tension T is considered to act in a direction that it perpendicular to
the line L. It is also considered to be a negative force, since it it resists a pulling force.

In the case where the surface is an interface between two different substances (say i
and j ) equation (1) is better expressed by the equation

T ij=−τ ij Lij , (2)

In which  τ ij  specifies the interface tension between layers  i  and j .  Note that the
interface can be between solids, liquids or gases in any combined pair. 

Surface Tension – a Surface Energy Description

The  second  approach  to  defining  surface  tension  is  through  surface  energy.  The
surface is under tension, therefore any increase in surface area requires work and
work is a measure of energy. In effect, increasing the surface area does work on the
surface and increases its energy. See Figure 1.

Figure 1

In Figure 1 a square area A of a surface is increased by an amount δ A  by pulling the
right hand edge a distance δ x  against the surface tension T=−τ L.  The pulling force
is in the opposite direction to the surface tension and so the work done on the surface
is δW=τ Lδx .  This is the increase in the energy of the surface, which can be written
as δ E=τδ A .  In general the energy of the whole surface can be written as:
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E=τ A , (3)

or in the case of an interface:

Eij=τ ij Aij . (4)

In Figure 1 it is evident that the surface tension resists an increase in surface
area and therefore surface energy.  It follows that free surfaces will  always
ensure that the surface energy is at a minimum. Note that in equations (1) and
(2), τ  and τij  are defined in units of force per unit length, while in equations
(3) and (4) they are defined in units of energy per unit area. Dimensionally,
these are the same (MT−2

) ,  so τ  (or τij ) has the same value in each case.

The Contact Angle

With these two definitions of surface tension in mind, let is return to the drop
of liquid on a flat surface.

Figure 2

In  Figure  2  we  show  a  drop  of  liquid  on  a  solid  surface.  Three  different
substances  are  involved  here.  Firstly  there  is  the  air,  which  we  assume
surrounds the system. This is labelled 1 in the figure. Next there is the liquid,
which lies on the surface and is labelled 2. Finally there is the solid surface,
which is labelled 3. Therefore three surface tension coefficients are necessary
to describe this system: τ12 ,  for the interface between the air and the liquid;
τ23 ,  for the interface between the liquid and the solid surface; and finally τ13
for the interface between the air and the solid surface.

The  first  thing  we can  determine is  the  contact  angle  of  the  drop  on  the
surface, which is the angle θ  shown in Figure 2. Wherever the liquid drop joins
the  solid  surface,  such  as  points  P  and  R ,  is  a  place  where  all  three
substances are in mutual contact. Therefore at every point on the edge of the
drop on the solid surface, three surface tension forces are acting and, provided
the drop is  stable  on the surface,  these forces must  be in equilibrium.  By
considering a small horizontal line δ l  at a typical point like P  it is easy to see
that the forces balance in the following way:
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τ13=τ23+τ12cosθ . (5)

From this we easily obtain

θ=cos−1(
τ13−τ23

τ12 ) . (6)

This is the contact angle and it is an important property of the drop, but it does
not tell us anything more without further assumptions. It seems logical that
the overall shape of the drop on the actual surface must be circular, since no
particular direction on the surface is favoured by the acting forces. However it
is  easy  to  imagine  that  a  drop  that  has  a  non-circular  shape  might
nevertheless satisfy equation (6). To resolve this, we must adopt a surface
energy approach.

The Shape of the Drop

We shall assume that the shape of the drop is determined by the minimum
energy surface, which equations (3) and (4) show is equivalent to a minimum
surface area. The minimum surface area for a free spherical drop is a sphere.
In the case of a drop lying on a surface it is reasonable to assume that the
preferred  shape  would  be  a  section  of  a  sphere,  provided  it  satisfies  the
contact angle as determined by equation (6). This is a boundary condition that
the drop must satisfy.

Figure 3
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In  order  to  factor  in  the  boundary  condition  we need to  develop Figure  2
further, in the manner shown in Figure 3.

As seen in Figure 3, if the surface of the drop (the arc drawn from R  to P ) is
a section of a sphere, then the surface tension at contact point P  (labelled 
τ12 ) must lie in the air-liquid interface and must therefore be tangential to the
sphere at  P .  A normal to the surface at  P  must pass through the centre of
the sphere at O  and also be perpendicular to the surface tension force vector.
Point O  can be found where the perpendicular bisector of the line RP  on the
solid surface (i.e. the drop diameter)  intersects the normal drawn from  P .
The bisector also intersects the solid surface at C  and the tangential surface
tension  force  vector  at  Q .  Angles  O P̂Q  and  QĈ P  are  right  angles  and
triangles  OPQ  and  QCP  are right angled triangles. From this it follows that
angle QÔ P  is equal to θ .

We now need to determine the dimensions of the drop. This is defined by the
volume V of  the  initial  drop  of  liquid,  which  we  shall  assume  is  a  known
quantity. The volume of the drop is the volume difference between two conical
cones. The first is the flat bottomed cone that has its vertex at  O  and its
circular  base is  the disk of  the drop in contact with the solid surface.  The
second cone has the same apex, but its base is the curved surface of the drop,
which we know is spherical. The volume of the drop is then

V=
2π
3

r3(1−cosθ)−π
3
r3 cosθ sin2θ , (7)

in which  r  is the radius of the sphere and  θ  is the contact angle. The first
term on the right is the volume (V sc)  of the cone with the spherical base and is
obtained from the integral

V sc=∫
0

r

∫
0

2π

∫
0

θ

r2sinθ dθd ϕ dr , (8)

which is simply the integral of the standard spherical volume element over the
required ranges. The second term on the right is the volume  V fc  of the flat
based cone given as

V fc=
1
3
base x height=

1
3

π(rsinθ)
2 r cosθ=π

3
r3 cosθsin2θ . (9)

Equation (7) is easily expanded and rearranged to give

V=π
3
r3 (cos3θ−3cos2θ+2 ) . (10)
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In equation (10)  V  and  θ  are known quantities and we need to know the
radius r .  Rearranging gives the following formula for r :

r3=
3V
π (cos3θ−3cosθ+2 )

−1 (11)

from which we can calculate the radius.

Knowledge of the radius permits a complete specification of the geometrical
properties of the drop on the surface, so we have the following.

The diameter of the drop Ddrop  is given by

Ddrop=2 r sinθ . (12)

The height of the drop Hdrop  is given by

Hdrop=r (1−cosθ). (13)

The area of liquid in contact with the solid surface A23  is 

A23=π(r sinθ)
2 (14)

The area of liquid in contact with the air is

A12=r2∫
0

2π

∫
0

θ

sinθ dϕ d θ=2π r 2(1−cosθ) . (15)

The energies  associated  with  the  surfaces  of  the drop can be obtained by
multiplying areas A12  and A23  by τ12  and τ23  respectively.

Proving the Surface Energy is Minimized

It is assumed above that the shape of the liquid drop on the surface is portion
of  a spherical  sphere and that the contact angle this makes with the solid
surface is given by equation (6), but we have not proved this. Here we do so
using the minimization of the surface energy. The total surface energy is given
by the equation

E=A12 τ12+(A−A23) τ13+A23 τ23 . (16)

In this equation A ij  is the area of the interface between substances i  and j  
etc. and τij is the corresponding coefficient of surface tension. Area A  is the 
area of the solid surface and is an arbitrary constant such that A>A23 . The first
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and third terms on the right of equation (16) are the interface energies of the 
liquid drop with the air and the solid surface respectively, while the second 
term is the interface energy of the air with the solid surface. The areas A23  
and A12  are given by equations (14) and (15) respectively.

Differentiating the total surface energy (16) with respect to θ  gives

dE
dθ

=(τ23−τ13)
d
d θ

A23+τ12
d
d θ

A12 . (17)

Differentiating (15) gives

d
dθ

A12=4 π r (1−cosθ)
dr
d θ

+2π r2 sinθ , (18)

while differentiating (14) gives

d
dθ

A23=2π r sin
2
θ
dr
dθ

+2π r2 sinθcosθ . (19)

Substituting (18) and (16) into (17) and rearranging gives

dE
dθ

=(τ23−τ13)(2π r sin2θ dr
dθ

+2π r2 sinθcosθ)+τ12(4 π r (1−cos θ)
dr
d θ

+2π r2sinθ) . (20)

At maximum or minimum the derivative (20) should be zero, hence we have 
after rearrangement

((τ23−τ13)sin
2
θ+2 τ12(1−cosθ))

dr
dθ

+((τ23−τ13)r sinθ cosθ+τ12r sinθ)=0. (21)

The  derivative dr /d θ  is obtained from (11) and is

dr
dθ

=− π
3V

r4 sin3θ . (22)

So (21) becomes after rearrangement

((τ23−τ13)sin
2
θ+2 τ12(1−cosθ)) π

3V
r3 sin2θ−((τ23−τ13)cos θ+τ12)=0. (23)

Inserting (11) into (23) and rearranging gives

((τ23−τ13)sin
2
θ+2 τ12(1−cosθ))sin2θ−(( τ23−τ13)cosθ+ τ12 )(cos

3
θ−3cosθ+2)=0. (24)
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In (24) we may replace sin2θ  by cos2θ−1  and then define x=cosθ  and expand 
to obtain

τ12 x
3
−(2 τ12−(τ23−τ13))x

2
+(τ12−2(τ23−τ13)) x+(τ23−τ13)=0. (25)

We can solve this equation by Newton-Raphson, Cardano or graphically, but all 
we need do here is prove that the solution given in equation (6) for the contact
angle is also a solution for (25). Writing (6) in the form

x=−
(τ23−τ13)

τ12
(26)

and substituting this into (25) leads to

−(τ23−τ13)
3
−2 τ12(τ23−τ13)

2
+(τ23−τ13)

3
−(τ23−τ13)τ12

2
+

2(τ23−τ13)
2
τ12+(τ23−τ13) τ12

2
=0.

(27)

Where it is apparent that all the different terms cancel out. This proves that 
contact angle given in (6) is a solution of the minimum energy equation (25) 
and is therefore consistent with the minimum energy surface.
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